2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2

2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2

ID:45529436

大小:205.50 KB

页数:4页

时间:2019-11-14

2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2_第1页
2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2_第2页
2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2_第3页
2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2_第4页
资源描述:

《2019年高中数学 2.1.2直线的方程-点斜式课时作业 苏教版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019年高中数学2.1.2直线的方程-点斜式课时作业苏教版必修2【课时目标】 1.掌握坐标平面内确定一条直线的几何要素.2.会求直线的点斜式方程与斜截式方程.3.了解斜截式与一次函数的关系.直线的点斜式方程和斜截式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率k斜率存在斜截式斜率k和在y轴上的截距b斜率存在一、填空题1.直线y-2=-(x+1)的倾斜角和所过的点为________(填序号).①120°,(1,-2);②120°,(-1,2);③150°,(1,-2);④150°,(-1,2).2.下列四个结论:①方程k=与方程y-2=k(x+1)

2、可表示同一条直线;②直线l过点P(x1,y1),倾斜角为90°,则其方程是x=x1;③直线l过点P(x1,y1),斜率为0°,则其方程是y=y1;④所有的直线都有点斜式和斜截式方程.正确结论的个数是________.3.直线y=kx+b通过第一、三、四象限,则k、b的符号为________.4.直线y=ax+b和y=bx+a在同一坐标系中的图形可能是________(填序号).5.集合A={直线的斜截式方程},B={一次函数的解析式},则集合A、B间的关系是__________.6.直线kx-y+1-3k=0当k变化时,所有的直线恒过定点________.7.把直线

3、x-y+-1=0绕点(1,)逆时针转15°后,得到的直线方程为________.8.直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来位置,那么l的斜率为________.二、解答题9.写出下列直线的点斜式方程.(1)经过点A(2,5),且与直线y=2x+7平行;(2)经过点C(-1,-1),且与x轴平行;(3)经过点D(1,1),且与x轴垂直.10.已知直线l的斜率为,且和两坐标轴围成三角形的面积为3,求l的方程.11.等腰△ABC的顶点A(-1,2),AC的斜率为,点B(-3,2),求直线AC、BC及∠A的平分线所在直线方程.能力提升12.

4、求过点(2,1)和点(a,2)的直线方程.13.求斜率为,且与坐标轴所围成的三角形的周长是12的直线l的方程.1.已知直线l经过的一个点和直线斜率就可用点斜式写出直线的方程.用点斜式求直线方程时,必须保证该直线斜率存在.而过点P(x0,y0),斜率不存在的直线方程为x=x0.直线的斜截式方程y=kx+b是点斜式的特例.2.求直线方程时常常使用待定系数法,即根据直线满足的一个条件,设出其点斜式方程或斜截式方程,再根据另一条件确定待定常数的值,从而达到求出直线方程的目的.但在求解时仍然需要讨论斜率不存在的情形.2.1.2 直线的方程(一)——点斜式答案知识梳理名称已知条

5、件示意图方程使用范围点斜式点P(x0,y0)和斜率ky-y0=k(x-x0)斜率存在斜截式斜率k和在y轴上的截距by=kx+b斜率存在作业设计1.②2.2解析 ①④是错误的,②③正确,其中①中k=表示的直线应除去点(-1,2),④中只有存在斜率的直线才有点斜式和斜截式.3.k>0,b<0 4.④5.BA解析 一次函数y=kx+b(k≠0);直线的斜截式方程y=kx+b中k可以是0,所以BA.6.(3,1)解析 直线kx-y+1-3k=0变形为y-1=k(x-3),由直线的点斜式可得直线恒过定点(3,1).7.y=x8.-解析 可设直线l方程为y=kx+b,沿x轴

6、负方向平移3个单位得y=k(x+3)+b,再沿y轴正方向平移1个单位后得y=k(x+3)+b+1,回到原来位置则直线的斜率和与y轴交点保持不变,所以3k+1=0,k=-.9.解 (1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k=tan0°=0,所以直线的点斜式方程为y-(-1)=0,即y=-1.(3)由题意可知直线的斜率不存在,所以直线的方程为x=1.10.解 设直线l的方程为y=x+b,则x=0时,y=b;y=0时,x=-6b.由已知可得·

7、b

8、·

9、6b

10、=3,即6

11、b

12、2=6,∴b=±1.故所求直线方程为y=x

13、+1或y=x-1.11.解 AC:y=x+2+.∵AB∥x轴,AC的倾斜角为60°,∴BC的倾斜角为30°或120°.当α=30°时,BC方程为y=x+2+,∠A平分线倾斜角为120°,∴所在直线方程为y=-x+2-.当α=120°时,BC方程为y=-x+2-3,∠A平分线倾斜角为30°,∴所在直线方程为y=x+2+.12.解 当a=2时,过点(2,1)和(2,2)的直线斜率不存在,故直线方程为x=2;当a≠2时,斜率k==,∵直线过(2,1)点,∴由直线的点斜式可得方程为y-1=(x-2).综上所述,所求直线方程为x=2或y-1=(x-2).13.解 由已知直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。