2019届高三数学上学期起点考试试题 理

2019届高三数学上学期起点考试试题 理

ID:45504568

大小:270.50 KB

页数:6页

时间:2019-11-14

2019届高三数学上学期起点考试试题 理_第1页
2019届高三数学上学期起点考试试题 理_第2页
2019届高三数学上学期起点考试试题 理_第3页
2019届高三数学上学期起点考试试题 理_第4页
2019届高三数学上学期起点考试试题 理_第5页
资源描述:

《2019届高三数学上学期起点考试试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019届高三数学上学期起点考试试题理一、选择题(本题共12小题,毎小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)<>1.已知集合M={},N={},则A.{}B.{}C.D.2.已知复数满足,则A.1B.C.D.3.设等差数列{}前项的和为,若,则A.-32B.12C.16D.324.已知命题P:,那么命题为A.B.C.D.5.已知函数,若,则A.1B.-1C.3D.-36.执行程序框图,假如输入两个数是S=1、k=2,那么输出的S=A.B.C.4D.7.有四位游客来某地旅游,若每人只能从此地甲、乙、丙三个不同景点中选择一处游览,则每个景点都有人去游览的概率为A

2、.B.C.D.8.已知函数>0,),其图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称,那么函数的图象A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称9.已知满足,若的最大值为2,则的值为.10.已知两点A(a,0),B(-a,0)(a>0),若圆上存在点P,使得,则正实数的取值范围为A.(0,3]B.[1,3]C.[2,3]D.[1,2]11.已知A,B,C是双曲线(a>b>0)上的三个点,AB经过原点0,AC经过右焦点F,若BF丄AC且2

3、AF

4、=

5、CF

6、,则该双曲线的离心率是A.B.C.D.12.已知函数,若关于的方程恰有3个不同的实数解

7、,则实数m的取值范围是A.(-∞,2)U(2,+∞)B.(,+∞)C.(,1)D.(1,e)二、填空题:本题共4小题,毎小题5分,共20分。13.的展开式中项的系数为.14.函数的最小正周期为.15.如图所示,圆O及其内接正八边形。已知,点P为正八边形边上任意一点,,则的最大值为.16.某三棱锥的三视图如图所示,则它的外接球表面积为.三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤,第17〜21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。)(一)必考题:共60分。己知数列{}的前项和为,,且满足.(1)求数列{}的通项:(2)求数列{}的前项和为

8、.18.(本小题满分12分)如图,四棱锥P一ABCD的底面ABCD为平行四边形,DA=DP,(1)求证:PA⊥BD;(2)若DA丄DP,∠ABP=60°,BA=BP=2,求二面角D—PC一B的正弦值19.为了研究学生的数学核心素养与抽象能力(指标x)、推理能力(指标y)、建模能力(指标z的相关性,将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+x的值评定学生的数学核心素养,若,则数学核心素养为一级;若则数学核心素养为二级:若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:(1)在这10名学生中任取两人,求这两人的建棋能力指标

9、相同条件下综合指标值也相同的概率;(2)在这10名学生中任取三人,其中数学核心素养等级足一级的学生人数记为X,求随机变量X的分布列及其数学期望。20.已知A,B,C为椭圆E:上三个不同的点,0为坐标原点,若O为△ABC的重心。(1)如果直线AB、0C的斜率都存在,求证为定值;(2)试判断△ABC的面积是否为定值,如果是就求出这个定值,否则请说明理由。21.设函数,其中,e=2.718…为自然对数的底数.(I)讨论的单调性;(II)证明:当x>l时,>0;(Ⅲ)如果>在区间(1,+∞)内恒成立,求实数a的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做

10、的第一题计分。22.[选修4一4:坐标系与参数方程](10分)已知在平面直角坐标系:中,直线的参数方程是是参数),以原点0为极点,x轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为.(I)求直线的普通方程与曲线C的直角坐标方程;(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围。23.[选修4-5:不等式选讲](10分〉己知函数.(I)若a=2,求不等式>x+2的解集:(II)如果关于的不等式的解集不是空集,求实数a的取值范围。理科数学参考答案ABDCDCDBBBBC13.4014.15.16.17.解:(1);当时,,当时,,不满足上式,所以数列是从第二项起的等比

11、数列,其公比为2;所以.………………6分(2)当时,,当时,,,时也满足,综上………………12分18.解:(1)证明:取中点,连,∵,∴,,∵∴面,又∵面,∴………………4分(2)∵,,,∴是等腰三角形,是等边三角形,∵,∴,.∴,∴以所在直线分别为轴建立空间直角坐标系,………………6分则,,,从而得,,,设平面的法向量则,即,∴,设平面的法向量,由,得,∴∴设二面角为,∴………………12分19.解:x233

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。