欢迎来到天天文库
浏览记录
ID:45489279
大小:54.80 KB
页数:3页
时间:2019-11-13
《2019新人教A版必修四3.1.3《两角和与差的正切》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019新人教A版必修四3.1.3《两角和与差的正切》word教案【学习导航】1.掌握两角和与差的正切公式及其推导方法。2.通过公式的推导,了解它们的内在联系,培养逻辑推理能力。3.能正确运用三角公式,进行简单的三角函数式的化简、求值和恒等变形。教学重点:学习重点能根据两角和与差的正、余弦公式推导出两角和与差的正切公式学习难点进行简单的三角函数式的化简、求值和恒等变形【自学评价】1.两角和与差的正、余弦公式2.tan(a+b)公式的推导∵cos(a+b)¹0tan(a+b)=当cosacosb¹0时,分子分母同时除以cosacosb得:以-b代b得:其中都不等于
2、3.注意:1°必须在定义域范围内使用上述公式tana,tanb,tan(a±b)只要有一个不存在就不能使用这个公式,只能用诱导公式.2°注意公式的结构,尤其是符号.【精典范例】例1已知tana=,tanb=-2求cot(a-b),并求a+b的值,其中0°3、个根,证明:p-q+1=0.【证】例5已知tana=,tan(-b)=(tanatanb+m),又a,b都是钝角,求a+b的值.【解】思维点拔:两角和与差的正弦及余弦公式,解题时要多观察,勤思考,善于联想,由例及类归纳解题方法,如适当进行角的变换,灵活应用基本公式,特殊角函数的应用等是三角恒等到变换中常用的方法和技能.【追踪训练一】1.若tanAtanB=tanA+tanB+1,则cos(A+B)的值为()2.在△ABC中,若0<tanA·tanB<1则△ABC一定是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形3.在△ABC中,tanA+tanB4、+tanC=3,tan2B=tanAtanC,则∠B等于.4.=.5.已知.6.已知(1)求;(2)求的值(其中).【选修延伸】例6已知A、B为锐角,证明的充要条件是(1+tanA)(1+tanB)=2.【证】思维点拔:可类似地证明以下命题:(1)若α+β=,则(1-tanα)(1-tanβ)=2;(2)若α+β=,则(1+tanα)(1+tanβ)=2;(3)若α+β=,则(1-tanα)(1-tanβ)=2.【追踪训练二】1.an67°30′-tan22°30′等于()A.1B.C.2D.42.(1+tan1°)(1+tan2°)(1+tan3°)…(1+t5、an44°)(1+tan45°)=.3.=4.已知3sinβ=sin(2α+β)且tanα=1,则tan(α+β)=
3、个根,证明:p-q+1=0.【证】例5已知tana=,tan(-b)=(tanatanb+m),又a,b都是钝角,求a+b的值.【解】思维点拔:两角和与差的正弦及余弦公式,解题时要多观察,勤思考,善于联想,由例及类归纳解题方法,如适当进行角的变换,灵活应用基本公式,特殊角函数的应用等是三角恒等到变换中常用的方法和技能.【追踪训练一】1.若tanAtanB=tanA+tanB+1,则cos(A+B)的值为()2.在△ABC中,若0<tanA·tanB<1则△ABC一定是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形3.在△ABC中,tanA+tanB
4、+tanC=3,tan2B=tanAtanC,则∠B等于.4.=.5.已知.6.已知(1)求;(2)求的值(其中).【选修延伸】例6已知A、B为锐角,证明的充要条件是(1+tanA)(1+tanB)=2.【证】思维点拔:可类似地证明以下命题:(1)若α+β=,则(1-tanα)(1-tanβ)=2;(2)若α+β=,则(1+tanα)(1+tanβ)=2;(3)若α+β=,则(1-tanα)(1-tanβ)=2.【追踪训练二】1.an67°30′-tan22°30′等于()A.1B.C.2D.42.(1+tan1°)(1+tan2°)(1+tan3°)…(1+t
5、an44°)(1+tan45°)=.3.=4.已知3sinβ=sin(2α+β)且tanα=1,则tan(α+β)=
此文档下载收益归作者所有