2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5

2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5

ID:45480585

大小:344.80 KB

页数:7页

时间:2019-11-13

2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5_第1页
2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5_第2页
2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5_第3页
2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5_第4页
2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5_第5页
资源描述:

《2019-2020年高中数学 2.1.6正、余弦定理的应用举例(1)教案 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学2.1.6正、余弦定理的应用举例(1)教案北师大版必修5知识梳理一、解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题

2、转化为解三角形问题.三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.典例剖析题型一距离问题北甲乙例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?解:如图,连结,由已知,,,又,是等边三角形,,由已知,,,在中,由余弦定

3、理,..因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.题型二高度问题例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。解法一:(用正弦定理求解)由已知可得在ACD中,AC=BC=30,AD=DC=10,ADC=180-4,=。sin4=2sin2cos2cos2=,得2=30=15,在RtADE中,AE=ADsin60=15答:所求角为15,建筑物高度为15m解法二:(设方程来求解)设

4、DE=x,AE=h在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)两式相减,得x=5,h=15在RtACE中,tan2==2=30,=15答:所求角为15,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=x,由题意,得BAC=,CAD=2,AC=BC=30m,AD=CD=10m在RtACE中,sin2=------①在RtADE中,sin4=,----②②①得cos2=,2=30,=15,AE=ADsin60=15答:所求角为15,建筑物高度为15m评析:根据题意正确画出图形是解题的关键

5、,同时要把题意中的数据在图形中体现出来。备选题角度问题例3.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在处获悉后,测出该渔轮在方位角为,距离为的处,并测得渔轮正沿方位角为的方向,以的速度向小岛靠拢,我海军舰艇立即以的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到,时间精确到).解:设舰艇收到信号后在处靠拢渔轮,则,,又,.由余弦定理,得,即.化简,得图1-3-2,解得(负值舍去).由正弦定理,得,所以,方位角为.答舰艇应沿着方向角的方向航行,经过就可靠近渔轮.评析:本例是正弦定理、余弦定理

6、在航海问题中的综合应用.解本题的关键是根据实际,找出等量关系,在画示意图时,要注意方向角的画法。点击双基一.选择题:1.在△ABC中,下列各式正确的是()A.=B.asinC=csinBC.asin(A+B)=csinAD.c2=a2+b2-2abcos(A+B)解:根据正弦定理得,又sinC=sin(A+B),asin(A+B)=csinA答案:C2.海上有A、B两个小岛相距10nmile,从A岛望B岛和C岛成60°的视角,从B岛望A岛和C岛成75°角的视角,则B、C间的距离是()A.5nmileB.10nmileC.n

7、mileD.5nmile解:根据题意知:AB=10,A=60°,B=75°则C=45°,a===5答案:D3.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为()AA.米B.米C.200米D.200米 解:如图,设塔高AB为h,  Rt△CDB中,CD=200,∠BCD=90°-60°=30°    在△ABC中,∠ABC=∠BCD=30°,∠ACB=60°-30°=30°  ∴ ∠BAC=120°  ∴   ∴ (m)答案:A  4.某人以时速akm向东行走,此时正刮着时速akm的南风,

8、那么此人感到的风向为,风速为.答案:东南a5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行30nmile后看见灯塔在正西方向,则这时船与灯塔的距离是.解:10课后作业1.已知三角形的三边长分别为a、b、,则这个三角形的最大角是()A.135°B.120°C.60°D.90°解:根据

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。