2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题

2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题

ID:45477755

大小:834.30 KB

页数:21页

时间:2019-11-13

2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题_第1页
2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题_第2页
2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题_第3页
2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题_第4页
2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题_第5页
资源描述:

《2019-2020年高考数学大二轮总复习 增分策略 专题五 立体几何与空间向量 第2讲 空间中的平行与垂直试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学大二轮总复习增分策略专题五立体几何与空间向量第2讲空间中的平行与垂直试题1.(xx·北京)设α,β是两个不同的平面,m是直线且m⊂α.则“m∥β”是“α∥β”的(  )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(xx·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(  )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(xx·江苏)如图,在直三棱柱ABC-A

2、1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;  (2)BC1⊥AB1.  1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.热点一 空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四

3、面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1 (1)(xx·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)平面α∥平面β的一个充分条件是(  )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α思维升华 解决空间点、线、面位置关系的组合判断题

4、,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.跟踪演练1 已知m,n为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m⊥α,n⊥α,则m∥n;②若m⊥α,m⊥n,则n∥α;③若α⊥β,m∥α,则m⊥β;④若m⊥α,m∥β,则α⊥β.A.0B.1C.2D.3热点二 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 (x

5、x·广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.     思维升华 垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证

6、明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.跟踪演练2 如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.      热点三 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问

7、题的主要方法.例3 如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.        思维升华 (1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.跟

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。