2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修

2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修

ID:45436623

大小:143.80 KB

页数:5页

时间:2019-11-13

2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修_第1页
2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修_第2页
2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修_第3页
2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修_第4页
2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修_第5页
资源描述:

《2019-2020年高一数学 2.8对数函数(备课资料) 大纲人教版必修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高一数学2.8对数函数(备课资料)大纲人教版必修一、指数函数与对数函数对照表名称指数函数对数函数一般形式y=ax(a>0,a≠1)y=logax(a>0,a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)函数值变化情况当a>1时ax当0<a<1时ax当a>1时logax当0<a<1时logax单调性当a>1时,ax是增函数当0<a<1时,ax是减函数当a>1时,logax是增函数当0<a<1时,logax是减函数图象y=ax的图象与y=logax的图象关于直线y=x对称二、参考例题[例1](1)函数y=lg

2、(x2-3x+2)的定义域为F,y=lg(x-1)+lg(x-2)的定义域为G,那么A.F∩G=B.F=GC.FGD.GF解:由x2-3x+2>0,得(x-1)(x-2)>0∴F=(-∞,1)∪(2,+∞)由,得x>2∴G=(2,+∞),∴GF答案:D(2)如果x>1,a=x,那么A.a2>2a>aB.2a>a>a2C.a2>a>2aD.a>2a>a2解法一:由y=x的图象知:当x>1时,y<0,即a<0∴有a2>a>2a.解法二:∵x>1,可令x=2,得a=-1,a2=1,2a=-2∵1>-1>-2,∴a2>a>2a.答案:C评述:解法二采用了

3、特值代入法,应提醒学生在做选择题注意这种方法的应用.[例2]设loga<1,则实数a的取值范围是A.0<a<B.<a<1C.0<a<或a>1D.a>解:由loga<1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<(2)当a>1时,由y=logax是增函数,得:a>,∴a>1综合(1)(2)得:0<a<或a>1答案:C[例3]设0<x<1,a>0且a≠1,试比较

4、loga(1-x)

5、与

6、loga(1+x)

7、的大小解法一:作差法

8、loga(1-x)

9、-

10、loga(1+x)

11、=

12、

13、-

14、

15、=(

16、lg(1-x)

17、-

18、lg(1+x

19、)

20、)∵0<x<1,∴0<1-x<1<1+x∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2)由0<x<1,得,lg(1-x2)<0,∴-·lg(1-x2)>0,∴

21、loga(1-x)

22、>

23、loga(1+x)

24、解法二:作商法=

25、log(1-x)(1+x)

26、∵0<x<1,∴0<1-x<1+x∴

27、log(1-x)(1+x)

28、=-log(1-x)(1+x)=log(1-x)由0<x<1,∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1,∴>1-x>0∴0<log(1-x)<log(1-x)(1-x)=1∴

29、loga(1-x

30、)

31、>

32、loga(1+x)

33、解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]=loga(1-x2)·loga=·lg(1-x2)·lg∵0<x<1,∴0<1-x2<1,0<<1∴lg(1-x2)<0,lg<0∴loga2(1-x)>loga2(1+x)即

34、loga(1-x)

35、>

36、loga(1+x)

37、解法四:分类讨论去掉绝对值当a>1时,

38、loga(1-x)

39、-

40、loga(1+x)

41、=-loga(1-x)-loga(1+x)=-loga(1-x2

42、)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴

43、loga(1-x)

44、-

45、loga(1+x)

46、=

47、loga(1-x)+loga(1+x)

48、=loga(1-x2)>0∴当a>0且a≠1时,总有

49、loga(1-x)

50、>

51、loga(1+x)

52、●备课资料一、参考例题[例1](1995年全国)已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.解:先求函数定义域:由2-ax>0,得ax<2又a是对数

53、的底数,∴a>0且a≠1,∴x<由递减区间[0,1]应在定义域内可得>1,∴a<2又2-ax在x∈[0,1]是减函数∴y=loga(2-ax)在区间[0,1]也是减函数,由复合函数单调性可知:a>1∴1<a<2二、参考练习题1.已知f(x)=loga(ax-1)(a>0且a≠1)(1)求f(x)的定义域;(2)讨论f(x)的增减性;(3)当a取何值时,图象在y轴的左侧?解:(1)当a>1时,定义域为(0,+∞)当0<a<1时,由ax-1>0可知,定义域为(-∞,0)(2)设f(x)=logau,u=ax-1当a>1时,x∈(0,+∞),u=ax-

54、1是增函数,y=logau也是增函数由复合函数的单调性可知:f(x)在(0,+∞)上为增函数当0<a<1时,x∈(-∞,0),u=ax-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。