欢迎来到天天文库
浏览记录
ID:45347198
大小:250.80 KB
页数:15页
时间:2019-11-12
《2019-2020年中考数学专题复习《线段、角》提高测试》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年中考数学专题复习《线段、角》提高测试(一)判断题(每小题1分,共6分):1.经过一点可以画无数条直线,经过两点可以画一条直线,经过三点可以画三条直线………………………………………………………………………………………()【提示】错的是第三句话,因为三点可在一条直线上,也可不在一条直线上,当三点在一条直线上时(我们称之三点共线),经过这三点只可以画一条直线.【答案】×.2.两条直线如果有两个公共点,那么它们就有无数个公共点…………………()【提示】两点确定唯一的直线.【答案】√.3.射线AP与射线PA的公共部分是线段PA………
2、……………………………()【提示】线段是射线的一部分.【答案】如图:显然这句话是正确的.4.线段的中点到这条线段两端点的距离相等……………………………………()【提示】两点的距离是连结两点的线段的长度.【答案】√.5.有公共端点的两条射线叫做角…………………………………………………()【提示】角是有公共端点的两条射线组成的图形.【答案】×.【答案】×.【点评】互补两角的和是180°,平角为180°.就量数来说,两者是相同的,但从“形”上说,互补两角不一定有公共顶点,故不一定组成平角.所以学习概念时,一定要注意区别它们的不同点,以免混淆.二.填
3、空题(每小题2分,共16分):7.如图,图中有________条直线,有________条射线,有________条线段,以E为顶点的角有________个.【提示】直线没有端点,可向两方无限延伸.射线有一个端点,可向一方无限延伸,线段有两个端点,不延伸.直线上一点将一条直线分成两条射线.直线上两点和它们之间的部分是线段.【答案】1,9,12,4.12条线段分别是:线段AF、AD、FD、DC、DB、CB、BE、BF、EF、CE、CA、EA.8.如图,点C、D在线段AB上.AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是____
4、____cm.【提示】1.数出图中所有的线段;2.算出不同线段的长度;3.将所有线段的长度相加,得和.【答案】40.9.线段AB=12.6cm,点C在BA的延长线上,AC=3.6cm,M是BC中点,则AM的长是________cm.【提示】画出符合题意的图形,以形助思.【答案】4.5.∵BC=AB+AC,M是BC中点,∴AM=CM-AC=BC-AC=(AB+AC)-AC=(AB-AC)=(12.6-3.6)=4.5(cm).【点评】在进行线段长度计算时,可是对其表达式进行变形、最后将值代入,求出结果.这样可简化计算,提高正确率.10.如图,∠
5、AOB=∠COD=90°,∠AOD=146°,则∠BOC=________°.【提示】∠BOC=360°-∠AOB-∠AOD-∠DOC.【答案】34.11.如图,OB平分∠AOC.且∠2∶∠3∶∠4=3∶5∶4,则∠2=________°,∠3=________°,∠4=________°.【提示】1周角=360°.设1份为x°,列方程求解.【答案】72;120;96.12.∠A与∠B互补,∠A与∠C互余,则2∠B-2∠C=________°.【提示】∠A+∠B=180°.∠A+∠C=90°.代入要求的式子,化简即得.【答案】180°.∵∠A
6、+∠B=180°,∠A+∠C=90°,∴∠B=180°-∠A.∴2∠B-2∠C=2(180°-∠A)-2∠C=360°-2∠A-2∠C=360°-2(∠A+∠C)=360°-2×90°=180°.【点评】由已知可得关于∠A、∠B、∠C的方程组,此时不能确定∠B、∠C的大小,但只要将两式的两边分别相减,使得∠B-∠C=90°,2∠B-2∠C便不难求得.这种整体代入的思想是求值题中常用的方法.13.已知:∠的余角是52°38′15″,则∠的补角是________.【提示】分步求解:先求出∠的度数,再求∠的补角的度数.【答案】142°38′15″.
7、∵∠的余角是52°38′15″,∴∠=90°-52°38′15″=89°59′60″-52°38′15″=37°21′45″.∴∠的补角=180°-37°21′45″=179°59′60″-37°21′45″=142°38′15″.【点评】题中∠a只起过渡作用,可考虑到而不求,作整体代入.∵∠a=90°-52°38′15″,∴∠a的补角=180°-∠a=180°-(90°-52°38′15″)=90°+52°38′15″=142°38′15″.这样避开了单位换算,利于提高运算速度及正确率.若将已知条件反映到如图所示的图形上,运用数形结合的思想
8、观察图形,则一目了然.一般地,已知∠a的余角,求∠a的补角,则∠a的补角=90°+∠a的余角,即任一锐角的补角比它的余角大90°.利用这个结论解该题就更准确、快捷.
此文档下载收益归作者所有