欢迎来到天天文库
浏览记录
ID:45308118
大小:287.34 KB
页数:28页
时间:2019-11-11
《《大核心概念》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、十大核心概念核心概念数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。核心概念有何意义呢?第一,核心概念的内涵在性质上是体现的学习主体——学生的特征,它们涉及的是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等,因此,可以认为,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。第二,《标准》将这些核心概念放在课程内容设计栏目下提出表明,这些概念不是设计者超乎于数学课程内容之上外加的,而是实实在在蕴涵于具体的课程内
2、容之中,或者与课程内容紧密结合的。从这一意义上看,核心概念往往是一类课程内容的核心或聚焦点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键。并在数学内容的教学中有机地去发展学生的数学素养。第三,核心概念本质上体现的是数学的基本思想。数学的基本思想指对数学及其对象、数学概念和数学结构及数学方法的本质性认识。数学基本思想集中反映为数学抽象、数学推理和数学模型思想。这些思想是数学学习中的重要目标。不难看出,核心概念对数学基本思想的体现是鲜明的。比如,与“数与代数”部分内容直接关联的数感、符号意识、运算能力、推理能
3、力和模型思想等核心概念就不同程度的直接体现了抽象、推理和模型的基本思想要求。这启示我们,核心概念的教学要更关注其数学思想本质。第四,核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。仅以“数学思考”和“问题解决”部分的目标设定来看,《标准》就提出了:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力”;“发展数据分析观念,感受随机现象”;“发展合情推理和演绎推理能力”;“增强应用意识,提高实践能力”;“体验解决问题方法的多样性,发展创新意识”。这些目标表述几乎涵盖了所有的
4、核心概念。数感例一:2010年2月25日,国家统计局公布的《2009年国民经济和社会发展统计公报》显示:我国70个大中城市房屋销售价格同比上涨1.5%,其中新建住宅价格上涨1.3%。此报告一出立刻引起全国一片哗然。公众普遍反映此数据与实际状况严重不符。面对公众质疑,国家统计局召开紧急会议,讨论统计数据来源是否真实可靠?统计方法是否科学?舆论提出的一个问题是:不论统计部门统计方式是否科学,为何公众对房价的感觉与统计结果是大相径庭的呢?此例说明数感的确是存在的,它与公众的社会生活息息相关,并已成为现代社会公民所具有的基
5、本数学素养的一部分。数感例二:一老师在教学指数幂的意义时,抛出一个现实情境问题:将一张纸对折32次,它的厚度有多大呢?老师给出的结论使学生在感到惊讶之余,更表示出强烈的质疑。该问题的结论是:其厚度可以超过世界最高峰珠穆朗玛峰的高度。毫无疑问,这样的问题会像磁石一样,紧紧吸引学生的注意力,使学生产生一种“不见结果不信服”的学习内驱力。1.数感数感内涵:数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”数感主要表现归纳为三个方面:数
6、与数量、数量关系、运算结果估计:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。”关于数与数量在小学低段,儿童对数的感悟是从数数学习辨认各组实物对象的多少开始建立的。这是一个逐渐展开的过程。儿童对多少的感悟离不开具体的情境,这样他就需经历一个察觉实物集合中所包含的物体数量多少的过程,从而积累并形成对量的多少的感知。学习用数表示多少的第一步就是数数,即用自然数表示多少。在数数的过程中,他们能把数
7、量词与其代表的少量物体联系起来,逐渐过渡到数大量的物体;与此同时他们会形成这样的经验:数数的顺序不会改变数的结果;数的过程中下一个数比前一个数多一;数数中的最后一个数不但代表这个数,也代表了这组物体的总数(事实上就是序数与基数相等)。随着学习年级的增高,学生还会经历更多的对数意义的感悟,如对分数、负数、有理数……,并形成对数的各种表征方式,比如,他们会知道1/4,25%,0.25是同一个数的不同表示。对数与数量建立起来的数感常常与实际情境关联,比如对数量单位的认识,提起教室的长度,应该想到米,提到两个城市的距离则应
8、该想到公里(千米),同样,一个小学生会质疑一个宣传牌中所说“7000平方米森林中生活着两只东北虎”是否成立?结合实际情境,学生的数感起到了判断的作用。关于数量关系不同年龄段的学生在理解了所学数的意义及表征后,就具备了理解一定数量关系的基础。比如学生在学习分数概念后,会建立起整体与部分之间关系的感悟,依赖于具体情境或图形,会分辨两个分数的大小,“随着他们数感的
此文档下载收益归作者所有