欢迎来到天天文库
浏览记录
ID:45296247
大小:455.30 KB
页数:9页
时间:2019-11-11
《2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线01 理 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学6年高考母题精解精析专题10圆锥曲线01理一、选择题1.【xx高考真题浙江理8】如图,F1,F2分别是双曲线C:(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若
2、MF2
3、=
4、F1F2
5、,则C的离心率是A.B。C.D.2.【xx高考真题新课标理8】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()3.【xx高考真题新课标理4】设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()4.【xx高考真题四川理
6、8】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则()A、B、C、D、【答案】B【解析】设抛物线方程为,则点焦点,点到该抛物线焦点的距离为,,解得,所以.5.【xx高考真题山东理10】已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为(A)(B)(C)(D)6.【xx高考真题湖南理5】已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1B.-=1C.-=1D.-=17.【xx高考真题福建理8】已知双曲线的右焦点与抛物线y2=1
7、2x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A.B.C.3D.58.【xx高考真题安徽理9】过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为()9.【xx高考真题全国卷理3】椭圆的中心在原点,焦距为4一条准线为x=-4,则该椭圆的方程为A+=1B+=1C+=1D+=1【答案】C【解析】椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,,所以椭圆的方程为,选C.10.【xx高考真题全国卷理8】已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,
8、PF1
9、=
10、2PF2
11、,则cos∠F1PF2=(A)(B)(C)
12、(D)11.【xx高考真题北京理12】在直角坐标系xOy中,直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60º.则△OAF的面积为二、填空题13.【xx高考真题四川理15】椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大时,的面积是____________。【答案】3【命题立意】本题主要考查椭圆的定义和简单几何性质、直线与圆锥曲线的位置关系、,考查推理论证能力、基本运算能力,以及数形结合思想,难度适中.【解析】当直线过右焦点时的周长最大,;将带入解得;所以.14.【xx高考真题陕西理13】右图是抛物
13、线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.【答案】.15.【xx高考真题重庆理14】过抛物线的焦点作直线交抛物线于两点,若则=.16.【xx高考真题辽宁理15】已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为__________。【答案】4【解析】因为点P,Q的横坐标分别为4,2,代人抛物线方程得P,Q的纵坐标分别为8,2.由所以过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为联立方程组解得故点A的纵坐标为417.【xx高
14、考真题江西理13】椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若,,成等比数列,则此椭圆的离心率为_______________.18.【xx高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为▲.三、解答题19.【xx高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.(i)若,求直线的斜率;(ii)求证:是定值.(i)由①②得,。解得=2。∵注意到,∴。∴直线的斜率为。(ii)
15、证明:∵∥,∴,即。∴。由点在椭圆上知,,∴。20.【xx高考真题浙江理21】(本小题满分15分)如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求ABP的面积取最大时直线l的方程.(Ⅱ)易得直线OP的方程:y=x,设A(xA,yA),B(xB,yB),R(x0,y0).其中y0=x0.∵A,B在椭圆上,∴..
此文档下载收益归作者所有