欢迎来到天天文库
浏览记录
ID:45166216
大小:874.80 KB
页数:18页
时间:2019-11-10
《2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线11 理 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学6年高考母题精解精析专题10圆锥曲线11理18.(xx·安徽理)(本小题满分13分)点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.(I)证明:点是椭圆与直线的唯一交点;(II)证明:构成等比数列.解:本小题主要考查直线和椭圆的标准方程和参数方程,直线和曲线的几何性质,等比数列等基础知识。考查综合运用知识分析问题、解决问题的能力。本小题满分13分。解:(I)(方法一)由得代入椭圆,(方法三)在第一象限内,由可得椭圆在点P处的切线斜率切线方程为即。因此,就是椭圆在
2、点P处的切线。根据椭圆切线的性质,P是椭圆与直线的唯一交点。(II)的斜率为的斜率为由此得构成等比数列。21.(xx·福建理19)(本小题满分13分)已知A,B分别为曲线C:+=1(y0,a>0)与x轴的左、右两个交点,直线过点B,且与轴垂直,S为上异于点B的一点,连结AS交曲线C于点T.(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。解法一:解法二:23.(xx·辽宁理
3、)(本小题满分12分)已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。(20)解:(Ⅰ)由题意,c=1,可设椭圆方程为,解得,(舍去)所以椭圆方程为。……………4分(Ⅱ)设直线AE方程为:,代入得设,,因为点在椭圆上,所以24.(xx·宁夏海南理)(本小题满分12分)已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.(Ⅰ)求椭
4、圆C的方程;(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。(Ⅱ)设,其中。由已知及点在椭圆上可得。整理得,其中。(i)时。化简得所以点的轨迹方程为,轨迹是两条平行于轴的线段。26.(xx·天津理)(本小题满分14分)以知椭圆的两个焦点分别为,过点的直线与椭圆相交与两点,且。(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线上有一点在的外接圆上,求的值本小题主要考查椭圆的标准方程和几何性质、直线的方程、圆的方程等基础知识,考
5、查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力,满分14分解:由(I)得,所以椭圆的方程可写为设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.解法二:由(II)可知当时,得,由已知得【xx年高考试题】3.(xx·海南、宁夏理)已知点P在抛物线上,那么点P到点的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.B.C.D.解析:点P到抛物线焦点距离等于点P到抛物线准线距离,如图,故最小值在三点共线时取得,此时的纵坐标都是,所以选A。(点坐标为)答案:A6.(x
6、x·山东理)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A)(B)(C)(D)6.(xx·山东理)已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(A)10 (B)20 (C)30 (D)40解析:本题考查直线与圆的位置关系。,过点的最长弦为最短弦为答案:B7.(xx·广东)经过圆的圆心,且与直线垂直的直线方程是.8.(
7、xx·江苏)在平面直角坐标系中,设三角形ABC的顶点坐标分别为,点在线段OA上(异于端点),设均为非零实数,直线分别交于点E,F,一同学已正确算出的方程:,请你求OF的方程:。解析:本小题考查直线方程的求法。画草图,由对称性可猜想。事实上,由截距式可得直线,直线,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求的直线OF的方程。答案:9.(xx·江苏)在平面直角坐标系中,椭圆的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= ▲ 。10.(xx·海南、宁夏理)设双
8、曲线的右顶点为A,右焦点为F.过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为 .7.(广东)设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究
此文档下载收益归作者所有