4、)(C)(-1,1)(D)【答案】D【解析】由得则或即或所以或;由得即所以故.,选D.7.【xx高考四川文1】设集合,,则()A、B、C、D、【答案】D.【解析】,故选D.8.【xx高考陕西文1】集合,,则()A.B.C.D.【答案】C.【解析】,,故选C.10.【xx高考江西文2】若全集U={x∈R
5、x2≤4}A={x∈R
6、
7、x+1
8、≤1}的补集CuA为A
9、x∈R
10、0<x<2
11、B
12、x∈R
13、0≤x<2
14、C
15、x∈R
16、0<x≤2
17、D
18、x∈R
19、0≤x≤2
20、【答案】C【解析】全集,,所以,选C.12.【xx高考湖北文1】已知集
21、合A{x
22、-3x+2=0,x∈R},B={x
23、0<x<5,x∈N},则满足条件ACB的集合C的个数为A1B2C3D4【答案】D【解析】求解一元二次方程,得,易知.因为,所以根据子集的定义,集合必须含有元素1,2,且可能含有元素3,4,原题即求集合的子集个数,即有个.故选D.14.【2102高考福建文2】已知集合M={1,2,3,4},N={-2,2},下列结论成立的是A.NMB.M∪N=MC.M∩N=ND.M∩N={2}【答案】D.【解析】两个集合只有一个公共元素2,所以,故选D.15.【2102高考北京文1】已知集合
24、A={x∈R
25、3x+2>0}B={x∈R
26、(x+1)(x-3)>0}则A∩B=A.(-,-1)B.(-1,-)C.(-,3)D.(3,+)【答案】D【解析】因为,利用二次不等式可得或画出数轴易得:.故选D.17.【xx高考天津文科9】集合中最小整数位.【答案】【解析】不等式,即,,所以集合,所以最小的整数为。19.【xx高考江苏26】(10分)设集合,.记为同时满足下列条件的集合的个数:①;②若,则;③若,则。(1)求;(2)求的解析式(用表示).【答案】解:(1)当时,符合条件的集合为:,∴=4。(2)任取偶数,将除
27、以2,若商仍为偶数.再除以2,···经过次以后.商必为奇数.此时记商为。于是,其中为奇数。由条件知.若则为偶数;若,则为奇数。于是是否属于,由是否属于确定。设是中所有奇数的集合.因此等于的子集个数。当为偶数〔或奇数)时,中奇数的个数是()。∴。【解析】(1)找出时,符合条件的集合个数即可。(2)由题设,根据计数原理进行求解。【xx年高考试题】一、选择题:(2)集合,,,则等于(A)(B)(C)(D)【答案】B【命题意图】本题考查集合的补集与交集运算.属简答题.【解析】,所以.故选B.4.(xx年高考广东卷文科2)已知集
28、合A={(x,y)
29、x,y为实数,且},B={(x,y)
30、x,y为实数,且y=x},则A∩B的元素个数为A.0B.1C.2D.35.(xx年高考江西卷文科2)若全集,则集合等于()A.B.C.D.7.(xx年高考湖南卷文科1)设全集则()A.B. C. D.【答案】B【解析】画出韦恩图,可知。9.(xx年高考四川卷文科1)若全集M=,N=,=()(A)(B)(C)(D)【答案】B【解析】由已知,全集M={1,2,3,4,5},N={2,4},故MN={1,3,5}10.(xx年高考四川卷文科1)设集合,则(A)
31、(B)(C)(D)11.(xx年高考陕西卷文科8)设集合,,为虚数单位,R,则为()(A)(0,1)(B)(0,1](C)[0,1)(D)[0,1]【答案】C【分析】确定出集合的元素是关键。本题综合了三角函数、复数的模,不等式等知识点。【解】选C,所以;因为,即,所以,又因为R,所以,即;所以,故选C.12.(xx年高考浙江卷文科1)若,则(A)(B)(C)(D)【答案】C【解析】:,故选C14.(xx年高考辽宁卷文科1)已知集合A={x},B={x}},则AB=()(A){x}}(B){x}(C){x}}(D){x}
32、答案:D解析:利用数轴可以得到AB={x}。二、填空题:16.(xx年高考天津卷文科9)已知集合为整数集,则集合中所有元素的和等于.【答案】3【解析】因为,所以,故其和为3.17.(xx年高考江苏卷1)已知集合则【答案】【解析】本题主要考查集合及其表示,集合的运算,容易题.18.(xx年高考江苏卷14)设集合,,若则实数m的取值范