欢迎来到天天文库
浏览记录
ID:45167250
大小:879.80 KB
页数:13页
时间:2019-11-10
《2019-2020年高考数学 6年高考母题精解精析 专题12 概率01 理 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学6年高考母题精解精析专题12概率01理1.【xx高考真题辽宁理10】在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为(A)(B)(C)(D)2.【xx高考真题湖北理8】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是A.B.C.D.3.【xx高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A.B.C.D.4
2、.【xx高考真题福建理6】如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为A.B.C.D.【答案】C.【解析】根据定积分的几何意义可知阴影部分的面积,而正方形的面积为1,所以点P恰好取自阴影部分的概率为.故选C.5.【xx高考真题北京理2】设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)(B)(C)(D)6.【xx高考真题上海理11】三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的
3、概率是(结果用最简分数表示)。7.【xx高考真题新课标理15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为【答案】【解析】三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率那么该部件的使用寿命超过1000小时的概率为.8.【xx高考江苏6】(5分)现有10
4、个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是▲.9.【xx高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分
5、析处理能力和基本运算能力.【解析】10.【xx高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量X工期延误天数02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(Ⅰ)工期延误天数的均值与方差;(Ⅱ)在降水量X至少是的条件下,工期延误不超过6天的概率.【答案】(Ⅰ)由已知条件和概率的加法公式有:,..所以的分布列为:026100.30.40.20.1于是,;.故工期延误天数的均值为3
6、,方差为.11.【xx高考江苏25】(10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.(1)求概率;(2)求的分布列,并求其数学期望.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴,。∴随机变量的分布列是:01∴其数学期望。12.【xx高考真题广东理17】(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80
7、][80,90][90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望.【答案】本题是在概率与统计的交汇处命题,考查了用样本估计总体等统计知识以及离散型随机变量的分布列及期望,考查学生应用数学知识解决实际问题的能力,难度中等。【解析】14.【xx高考真题浙江理19】(本小题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机
8、变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).15.【xx高考真题重庆理17】(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数
此文档下载收益归作者所有