欢迎来到天天文库
浏览记录
ID:45295136
大小:119.00 KB
页数:7页
时间:2019-11-11
《2019-2020年高二上学期期末考试理科数学试题 Word版含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高二上学期期末考试理科数学试题Word版含答案一选择题(每小题5分共40分)1.复数A.B.C.D.2.若,则是“”的A.充分非必要条件 B.必要非充分条件C.充分且必要条件 D.既非充分也非必要条件3..曲线与直线及所围成的封闭图形的面积为A.B.C.D.4.已知方程:表示焦距为8的双曲线,则m的值等于A.-30B.10C.-6或10D.-30或345函数的大致图像为 ()6.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为( )A.0≤a<1B.02、<7.抛物线(>)的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为A.B.1C.D.28已知函数.若,使成立,则称为函数的一个“生成点”.函数的“生成点”共有A.1个B.2个C.3个D.4个二填空题(每小题5分共35分)9.命题“”的否定是.10.如果关于x的不等式3、x-34、-5、x-46、7、则m的取值范围为()15.若不等式对任意都成立,则实数a取值范围是。.三解答题(共75分)16.(12分)设函数f(x)=x2-2x+3,g(x)=x2-x(1)解不等式8、f(x)-g(x)9、≥2014;(2)若10、f(x)-a11、<2恒成立的充分条件是1≤x≤2,求实数a的取值范围.17.(12分)数列{an}满足Sn=2n-an(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想.18.(12分)如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点.(1)求证:平面.(2)求二面角的余弦12、值.19(13分)已知函数为自然对数的底数(Ⅰ)当时,求函数的极值;(Ⅱ)若函数在上单调递减,求的取值范围.20、(13分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.21(13分)设函数.(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较与的大小.,并证明你的13、结论.理科数学试卷答案一选择题1-5CDACD6-8BAB二填空题9.否定10.a>-111或121314.[1,8)15三解答题16.解:(1)由14、f(x)-g(x)15、≥2012得16、-x+317、≥2012,即18、x-319、≥2011,所以x-3≥2012或x-3≤-2012,解得x≥2015或x≤-2009.(2)依题意知:当1≤x≤2时,20、f(x)-a21、<2恒成立,所以当1≤x≤2时,-222、,所以实数a的取值范围(1,4).17.解:(1)a1=1,a2=,a3=,a4=,由此猜想an=(n∈N*).(2)证明:当n=1时,a1=1,结论成立.假设n=k(k≥1,且k∈N*)时,结论成立,即ak=,那么n=k+1(k≥1,且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.∴2ak+1=2+ak,∴ak+1===,这表明n=k+1时,结论成立.∴an=(n∈N*).18.【证明】(1)取的中点,连接.由题意知且,且,所以且,即四边形是平行四边形,所以,又平面,平面所以平面.---------------(5分)(223、)以为坐标原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,,则,平面的法向量,设是平面的法向量,由,令,得---------(10分)又二面角的平面角是锐角,所以二面角的平面角的余弦值是---------------------(12分)19解:(I)当时,,当变化时,,的变化情况如下表:13-0+0-递减极小值递增极大值递减所以,当时,函数的极小值为,极大值为(II)令①若,则,在内,,即,函数在区间上单调递减②若,则,其图象是开口向上的抛物线,对称轴为,当且仅当,即时,在内,,函数在区间上单调递减③若,则
2、<7.抛物线(>)的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为A.B.1C.D.28已知函数.若,使成立,则称为函数的一个“生成点”.函数的“生成点”共有A.1个B.2个C.3个D.4个二填空题(每小题5分共35分)9.命题“”的否定是.10.如果关于x的不等式
3、x-3
4、-
5、x-4
6、7、则m的取值范围为()15.若不等式对任意都成立,则实数a取值范围是。.三解答题(共75分)16.(12分)设函数f(x)=x2-2x+3,g(x)=x2-x(1)解不等式8、f(x)-g(x)9、≥2014;(2)若10、f(x)-a11、<2恒成立的充分条件是1≤x≤2,求实数a的取值范围.17.(12分)数列{an}满足Sn=2n-an(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想.18.(12分)如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点.(1)求证:平面.(2)求二面角的余弦12、值.19(13分)已知函数为自然对数的底数(Ⅰ)当时,求函数的极值;(Ⅱ)若函数在上单调递减,求的取值范围.20、(13分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.21(13分)设函数.(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较与的大小.,并证明你的13、结论.理科数学试卷答案一选择题1-5CDACD6-8BAB二填空题9.否定10.a>-111或121314.[1,8)15三解答题16.解:(1)由14、f(x)-g(x)15、≥2012得16、-x+317、≥2012,即18、x-319、≥2011,所以x-3≥2012或x-3≤-2012,解得x≥2015或x≤-2009.(2)依题意知:当1≤x≤2时,20、f(x)-a21、<2恒成立,所以当1≤x≤2时,-222、,所以实数a的取值范围(1,4).17.解:(1)a1=1,a2=,a3=,a4=,由此猜想an=(n∈N*).(2)证明:当n=1时,a1=1,结论成立.假设n=k(k≥1,且k∈N*)时,结论成立,即ak=,那么n=k+1(k≥1,且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.∴2ak+1=2+ak,∴ak+1===,这表明n=k+1时,结论成立.∴an=(n∈N*).18.【证明】(1)取的中点,连接.由题意知且,且,所以且,即四边形是平行四边形,所以,又平面,平面所以平面.---------------(5分)(223、)以为坐标原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,,则,平面的法向量,设是平面的法向量,由,令,得---------(10分)又二面角的平面角是锐角,所以二面角的平面角的余弦值是---------------------(12分)19解:(I)当时,,当变化时,,的变化情况如下表:13-0+0-递减极小值递增极大值递减所以,当时,函数的极小值为,极大值为(II)令①若,则,在内,,即,函数在区间上单调递减②若,则,其图象是开口向上的抛物线,对称轴为,当且仅当,即时,在内,,函数在区间上单调递减③若,则
7、则m的取值范围为()15.若不等式对任意都成立,则实数a取值范围是。.三解答题(共75分)16.(12分)设函数f(x)=x2-2x+3,g(x)=x2-x(1)解不等式
8、f(x)-g(x)
9、≥2014;(2)若
10、f(x)-a
11、<2恒成立的充分条件是1≤x≤2,求实数a的取值范围.17.(12分)数列{an}满足Sn=2n-an(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想.18.(12分)如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点.(1)求证:平面.(2)求二面角的余弦
12、值.19(13分)已知函数为自然对数的底数(Ⅰ)当时,求函数的极值;(Ⅱ)若函数在上单调递减,求的取值范围.20、(13分)给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.21(13分)设函数.(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较与的大小.,并证明你的
13、结论.理科数学试卷答案一选择题1-5CDACD6-8BAB二填空题9.否定10.a>-111或121314.[1,8)15三解答题16.解:(1)由
14、f(x)-g(x)
15、≥2012得
16、-x+3
17、≥2012,即
18、x-3
19、≥2011,所以x-3≥2012或x-3≤-2012,解得x≥2015或x≤-2009.(2)依题意知:当1≤x≤2时,
20、f(x)-a
21、<2恒成立,所以当1≤x≤2时,-222、,所以实数a的取值范围(1,4).17.解:(1)a1=1,a2=,a3=,a4=,由此猜想an=(n∈N*).(2)证明:当n=1时,a1=1,结论成立.假设n=k(k≥1,且k∈N*)时,结论成立,即ak=,那么n=k+1(k≥1,且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.∴2ak+1=2+ak,∴ak+1===,这表明n=k+1时,结论成立.∴an=(n∈N*).18.【证明】(1)取的中点,连接.由题意知且,且,所以且,即四边形是平行四边形,所以,又平面,平面所以平面.---------------(5分)(223、)以为坐标原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,,则,平面的法向量,设是平面的法向量,由,令,得---------(10分)又二面角的平面角是锐角,所以二面角的平面角的余弦值是---------------------(12分)19解:(I)当时,,当变化时,,的变化情况如下表:13-0+0-递减极小值递增极大值递减所以,当时,函数的极小值为,极大值为(II)令①若,则,在内,,即,函数在区间上单调递减②若,则,其图象是开口向上的抛物线,对称轴为,当且仅当,即时,在内,,函数在区间上单调递减③若,则
22、,所以实数a的取值范围(1,4).17.解:(1)a1=1,a2=,a3=,a4=,由此猜想an=(n∈N*).(2)证明:当n=1时,a1=1,结论成立.假设n=k(k≥1,且k∈N*)时,结论成立,即ak=,那么n=k+1(k≥1,且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.∴2ak+1=2+ak,∴ak+1===,这表明n=k+1时,结论成立.∴an=(n∈N*).18.【证明】(1)取的中点,连接.由题意知且,且,所以且,即四边形是平行四边形,所以,又平面,平面所以平面.---------------(5分)(2
23、)以为坐标原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,,则,平面的法向量,设是平面的法向量,由,令,得---------(10分)又二面角的平面角是锐角,所以二面角的平面角的余弦值是---------------------(12分)19解:(I)当时,,当变化时,,的变化情况如下表:13-0+0-递减极小值递增极大值递减所以,当时,函数的极小值为,极大值为(II)令①若,则,在内,,即,函数在区间上单调递减②若,则,其图象是开口向上的抛物线,对称轴为,当且仅当,即时,在内,,函数在区间上单调递减③若,则
此文档下载收益归作者所有