2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版

2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版

ID:45199562

大小:115.80 KB

页数:9页

时间:2019-11-10

2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版_第1页
2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版_第2页
2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版_第3页
2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版_第4页
2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版_第5页
资源描述:

《2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学第二章圆锥曲线与方程质量评估检测新人教B版一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线的方程为y=2ax2,且过点(1,4),则焦点坐标为(  )A. B.C.(1,0)D.(0,1)解析:∵抛物线过点(1,4),∴4=2a,∴a=2,∴抛物线方程为x2=y,焦点坐标为.答案:A2.已知0<θ<,则双曲线C1:-=1与C2:-=1的(  )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:先确定实半轴和虚半轴的长,再求出半焦距.双曲线C1和C2的实半轴长分别是sinθ和cosθ,虚

2、半轴长分别是cosθ和sinθ,则半焦距c都等于1,故选D.答案:D3.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )A.B.C.D.解析:设双曲线的标准方程为-=1(a>0,b>0),所以其渐近线方程为y=±x,因为点(4,-2)在渐近线上,所以=,根据c2=a2+b2,可得=,解得e2=,e=.答案:D4.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(  )A.+=1B.+=1C.+=1或+=1D.+=1解析:2c=6,∴c=3,∴2a+2b=18,a2=b2+c2,∴∴椭圆方程为+=1或+=1.答案:C5.已知双曲线

3、x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为(  )A.1B.0C.-2D.-解析:设点P(x0,y0),则x-=1,由题意得A1(-1,0),F2(2,0),则·=(-1-x0,-y0)·(2-x0,-y0)=x-x0-2+y,由双曲线方程得y=3(x-1),故·=4x-x0-5(x0≥1),可得当x0=1时,·有最小值-2,故选C.答案:C6.已知F是抛物线y=x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是(  )A.x2=2y-1B.x2=2y-C.x2=y-D.x2=2y-2解析:设P(x0,y0),PF的中点为(x,y),则y0=x,又

4、F(0,1),∴,∴,代入y0=x得2y-1=(2x)2,化简得x2=2y-1,故选A.答案:A7.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是(  )A.B.C.1D.解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为x-y=0或x+y=0,则焦点到渐近线的距离d1==或d2==.答案:B8.直线y=x+b与抛物线x2=2y交于A、B两点,O为坐标原点,且OA⊥OB,则b=(  )A.2B.-2C.1D.-1解析:设A(x1,y1),B(x2,y2),联立方程组消去y,得x2-2x-2b

5、=0,所以x1+x2=2,x1x2=-2b,y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2=b2,又OA⊥OB,∴x1x2+y1y2=0,即b2-2b=0,解得b=0(舍)或b=2.答案:A9.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )A.-=1B.-=1C.-=1D.-=1解析:因为双曲线-=1(a>0,b>0)的一个焦点在抛物线y2=24x的准线上,所以F(-6,0)是双曲线的左焦点,即a2+b2=36,又双曲线的一条渐近线方程是y=x,所以=,解得a2=9,b2=27,所以双曲线的

6、方程为-=1,故选B.答案:B10.若动圆圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点(  )A.(4,0)B.(2,0)C.(0,2)D.(0,-2)解析:抛物线y2=8x上的点到准线x+2=0的距离与到焦点(2,0)的距离相等,故动圆必过焦点(2,0).答案:B11.设圆锥曲线Γ的两个焦点分别为F1,F2.若曲线Γ上存在点P满足

7、PF1

8、∶

9、F1F2

10、∶

11、PF2

12、=4∶3∶2,则曲线Γ的离心率等于(  )A.或B.或2C.或2D.或解析:设圆锥曲线的离心率为e,由

13、PF1

14、∶

15、F1F2

16、∶

17、PF2

18、=4∶3∶2,知①若圆锥曲线为椭圆,由椭圆的定义,则有e===;

19、②若圆锥曲线为双曲线,由双曲线的定义,则有e===.综上,所求的离心率为或.故选A.答案:A12.已知椭圆C;+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )A.+=1B.+=1C.+=1D.+=1解析:利用椭圆离心率的概念和双曲线渐近线求法求解.∵椭圆的离心率为,∴==,∴a=2b.∴椭圆方程为x2+4y2=4b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。