欢迎来到天天文库
浏览记录
ID:45164656
大小:406.50 KB
页数:7页
时间:2019-11-10
《2018-2019学年高一数学10月学情检测试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、xx-2019学年高一数学10月学情检测试题一.选择题(本大题共12小题,每题5分,共60分,请将正确答案填入答题卷)1.下列四个图像中,不可能是函数图像的是()ABCD2.已知全集U={1,2,3,4,5,6},A={1,2,6},B={2,4,5},则(∁UA)∩B=()A.{4,5}B.{1,2,3,4,5,6}C.{2,4,5}D.{3,4,5}3.已知函数,则f[f(1)]=( )A.B.2C.4D.114.已知集合A={x∈N*
2、x﹣3<0},则满足条件B⊆A的集合B的个数为( )A.2B.3C.4D.85.下列有关集合的写法正确的是()A.B.C.D.6.函数,当时是增函数,
3、当时是减函数,则等于()A.-3B.13C.7D.57.函数f(x)=的定义域为( )A.[3,+∞)B.[3,4)∪(4,+∞)C.(3,+∞)D.[3,4)8.若函数f(x)对于任意实数x恒有f(x)﹣2f(﹣x)=3x﹣1,则f(x)等于( )A.x+1B.x﹣1C.2x+1D.3x+39.函数f(x)=
4、x2﹣6x+8
5、的单调递增区间为( )A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]10.已知函数f(x)=在R上单调递增,则实数a的取值范围是( )A.[﹣1,+∞)B.(﹣1,+∞)C.[﹣1,0)D.(﹣1,0)11
6、.设={1,2,3,4,5},若={2},,,则下列结论正确的是()A.且B.且C.且D.且12.已知不等式ax2+5x+b>0的解集是{x
7、2<x<3},则不等式bx2﹣5x+a>0的解集是( )A.{x
8、x<﹣3或x>﹣2}B.{x
9、x<﹣或x>﹣}C.{x
10、﹣<x<﹣}D.{x
11、﹣3<x<﹣2}二.填空题:(本大题共4小题,每小题5分,共20分.请将正确答案填入答题卷。)13.若集合A={x
12、ax2+ax+1=0,x∈R}不含有任何元素,则实数a的取值范围是 .14.设函数,若,则实数a的取值范围是________.15..若集合,,则集合_________16.关于x的不等式mx2
13、﹣2x+1≥0,对任意的x∈(0,3]恒成立,则m的取值范围是 ______ .三、解答题(本大题共6小题,17题10分,18-22题每题12分,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)若集合A={x
14、x2+5x﹣6=0},B={x
15、x2+2(m+1)x+m2﹣3=0}.(1)若m=0,写出A∪B的子集;(2)若A∩B=B,求实数m的取值范围.18.(12分)已知函数.(1)判断函数在区间上的单调性,并用定义证明你的结论;(2)求该函数在区间上的最大值与最小值.19.(12分)已知函数.(1)做出函数图象;(2)说明函数的单调区间(不需要证明);(3)若函数的
16、图象与函数的图象有四个交点,求实数的取值范围。20.(12分)设集合A={x
17、x+1≤0或x﹣4≥0},B={x
18、2a≤x≤a+2}(1)若A∩B=B,求实数a的取值范围.(2)若A∩B≠∅,求实数a的取值范围.21.(12分)已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g(t).22.(12分)已知函数f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,且当x>0时
19、,有f(x)>1.(1)求f(0).(2)求证:f(x)在R上为增函数.(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.高一10月学情检测数学试题参考答案一.选择题BACCDBBACCBC二.填空题13.0≤a<414.15.16.[1,+∞)三.解答题17【解答】解:(1)根据题意,m=0时,B={1,﹣3},A∪B={﹣6,﹣3,1};∴A∪B的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1},(2)由已知B⊆A,m<﹣2时,B=Φ,成立m=﹣2时,B={1}⊆A
20、,成立m>﹣2时,若B⊆A,则B={﹣6,1};∴⇒m无解,综上所述:m的取值范围是(﹣∞,﹣2].18【解析】(1)函数在上是增函数.证明:任取,且,则.易知,,所以,即,所以函数在上是增函数.(2)由(1)知函数在上是增函数,则函数的最大值为,最小值为19.(1)如图:(2)函数的单调递增区间为;单调递减区间为.(3)20.【解答】解:(1)集合A={x
21、x+1≤0或x﹣4≥0}={x
22、x≥4
此文档下载收益归作者所有