欢迎来到天天文库
浏览记录
ID:44996428
大小:508.50 KB
页数:57页
时间:2019-11-07
《计量经济学9多重共线性》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、多重共线性Multi-Collinearity一、多重共线性的概念二、多重共线性的来源三、多重共线性的后果四、多重共线性的检验五、克服多重共线性的方法六、案例*七、分步回归与多重共线性回顾6项基本假定(1)解释变量间不相关(无多重共线性)(2)E(ui)=0(随机项均值为零)(3)Var(ui)=2(同方差)(4)Cov(ui,uj)=0(随机项无自相关)(5)Cov(X,ui)=0(随机项与解释变量X不相关)(6)随机扰动服从正态分布。一、多重共线性的概念对于模型Yi=0+1X1i+2X2i++kXki+ii=1,2,…,n其基本假设之一是解释变量
2、是互相独立的。如果某两个或多个解释变量之间出现了相关性,则称为多重共线性(Multicollinearity)。如果存在c1X1i+c2X2i+…+ckXki=0i=1,2,…,n其中:ci不全为0,则称为解释变量间存在完全共线性(perfectmulticollinearity)。如果存在c1X1i+c2X2i+…+ckXki+vi=0i=1,2,…,n其中ci不全为0,vi为随机误差项,则称为近似共线性(approximatemulticollinearity)或交互相关(intercorrelated)。完全共线性的情况并不多见,一般出现的是在一定程度上的共
3、线性,即近似共线性。在矩阵表示的线性回归模型Y=X+中,完全共线性指:秩(X)4、反映真实的经济关系。例如,消费=f(当期收入,前期收入)显然,两期收入间有较强的线性相关性。(3)样本资料的限制由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。一般经验:时间序列数据样本:简单线性模型,往往存在多重共线性。截面数据样本:问题不那么严重,但多重共线性仍然是存在的。三、多重共线性的后果1、完全共线性下参数估计量不存在如果存在完全共线性,则(X’X)-1不存在,无法得到参数的估计量。的OLS估计量为:例:对离差形式的二元回归模型如果两个解释变量完全相关,如x2=x1,则这时,只能确定综合参数1+2的估计值:2、5、近似共线性下OLS估计量非有效近似共线性下,可以得到OLS参数估计量,但参数估计量方差的表达式为由于6、X’X7、0,引起(X’X)-1主对角线元素较大,使参数估计值的方差增大,OLS参数估计量非有效。以二元线性模型y=1x1+2x2+为例:恰为X1与X2的线性相关系数的平方r2由于r21,故1/(1-r2)1当完全不共线时,r2=0当近似共线时,08、线性相关性,例如X2=X1,这时,X1和X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。1、2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。4、变量的显著性检验失去意义存在多重共线性时参数估计值的方差与标准差变大容易使通过样本计算的t值小于临界值,误导作出参数为0的推断可能将重要的解释变量排除在模型之外5、模型的预测功能失效变大的方差容易使区间预测的“区间”变大,使预测失去意义。注意:除非是完全共线性,多重共线性并不意味着任何基本假设的违背;因此,即使出现较高程9、度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。多重共线性检验的任务是:(1)检验多重共线性是否存在;(2)估计多重共线性的范围,即判断哪些变量之间存在共线性。多重共线性表现为解释变量之间具有相关关系,所以用于多重共线性的检验方法主要是统计方法:如判定系数检验法、逐步回归检验法等。四、多重共线性的检验1、检验多重共线性是否存在(1)对两个解释变量的模型,采用简单相关系数法求出X1与X2的简单相关系数r,若10、r11、接近1,则说明两变量存在较强的多重共线性。12、(2)对多
4、反映真实的经济关系。例如,消费=f(当期收入,前期收入)显然,两期收入间有较强的线性相关性。(3)样本资料的限制由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。一般经验:时间序列数据样本:简单线性模型,往往存在多重共线性。截面数据样本:问题不那么严重,但多重共线性仍然是存在的。三、多重共线性的后果1、完全共线性下参数估计量不存在如果存在完全共线性,则(X’X)-1不存在,无法得到参数的估计量。的OLS估计量为:例:对离差形式的二元回归模型如果两个解释变量完全相关,如x2=x1,则这时,只能确定综合参数1+2的估计值:2、
5、近似共线性下OLS估计量非有效近似共线性下,可以得到OLS参数估计量,但参数估计量方差的表达式为由于
6、X’X
7、0,引起(X’X)-1主对角线元素较大,使参数估计值的方差增大,OLS参数估计量非有效。以二元线性模型y=1x1+2x2+为例:恰为X1与X2的线性相关系数的平方r2由于r21,故1/(1-r2)1当完全不共线时,r2=0当近似共线时,08、线性相关性,例如X2=X1,这时,X1和X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。1、2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。4、变量的显著性检验失去意义存在多重共线性时参数估计值的方差与标准差变大容易使通过样本计算的t值小于临界值,误导作出参数为0的推断可能将重要的解释变量排除在模型之外5、模型的预测功能失效变大的方差容易使区间预测的“区间”变大,使预测失去意义。注意:除非是完全共线性,多重共线性并不意味着任何基本假设的违背;因此,即使出现较高程9、度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。多重共线性检验的任务是:(1)检验多重共线性是否存在;(2)估计多重共线性的范围,即判断哪些变量之间存在共线性。多重共线性表现为解释变量之间具有相关关系,所以用于多重共线性的检验方法主要是统计方法:如判定系数检验法、逐步回归检验法等。四、多重共线性的检验1、检验多重共线性是否存在(1)对两个解释变量的模型,采用简单相关系数法求出X1与X2的简单相关系数r,若10、r11、接近1,则说明两变量存在较强的多重共线性。12、(2)对多
8、线性相关性,例如X2=X1,这时,X1和X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。1、2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。4、变量的显著性检验失去意义存在多重共线性时参数估计值的方差与标准差变大容易使通过样本计算的t值小于临界值,误导作出参数为0的推断可能将重要的解释变量排除在模型之外5、模型的预测功能失效变大的方差容易使区间预测的“区间”变大,使预测失去意义。注意:除非是完全共线性,多重共线性并不意味着任何基本假设的违背;因此,即使出现较高程
9、度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。多重共线性检验的任务是:(1)检验多重共线性是否存在;(2)估计多重共线性的范围,即判断哪些变量之间存在共线性。多重共线性表现为解释变量之间具有相关关系,所以用于多重共线性的检验方法主要是统计方法:如判定系数检验法、逐步回归检验法等。四、多重共线性的检验1、检验多重共线性是否存在(1)对两个解释变量的模型,采用简单相关系数法求出X1与X2的简单相关系数r,若
10、r
11、接近1,则说明两变量存在较强的多重共线性。
12、(2)对多
此文档下载收益归作者所有