2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析

2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析

ID:44903815

大小:997.52 KB

页数:22页

时间:2019-11-03

 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析_第1页
 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析_第2页
 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析_第3页
 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析_第4页
 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析_第5页
资源描述:

《 2018年高考数学(文)二轮复习讲练测专题1.5 立体几何(讲) 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2018年高考数学(文)二轮复习讲练测【高考改编☆回顾基础】1.【空间几何体的直观图和面积计算】【2017·全国卷Ⅰ改编】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2××2=12.2.【三视图与空间几何体的体积】【2017·全国卷Ⅱ改编】如图,网格纸上小正方形的边长为1

2、,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.【答案】63π【解析】3.【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为.【答案】【解析】【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考

3、查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、

4、正方体也有类似的体积公式V=kD3,其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3,那么,k1∶k2∶k3=(  )A.∶∶1B.∶∶2C.1∶3∶D.1∶∶【答案】D【解析】球中,;等边圆柱中,;正方体中,;所以.故选D.【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为(  )A.B.C.D.【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(),中国古代算术中的一种几

5、何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A.24B.C.64D.【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。由三

6、视图中的数据可得其体积为.选A.【方法总结☆全面提升】1.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分“是求侧面积还是求表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.3.等体积法也称等积转化法或等积变形法,它是通过选择合适的底面来求几何体体积的一种方法

7、,多用来解决与锥体有关的问题,特别是三棱锥的体积.【规范示例☆避免陷阱】【典例】【2016·全国卷Ⅰ改编】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是________.【反思提高】在由空间几何体的三视图确定几何体的形状时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,特别注意由各视图中观察者与几何体的相对位置与图中的虚实线来确定几何体的形状,最后根据三视图“长对正、高平齐、宽相等”的关系,确定轮廓线的

8、各个方向的尺寸.【误区警示】1.求几何体体积问题,可以多角度、多方位地考虑问题.在求三棱锥体积的过程中,等体积转化法是常用的方法,转换底面的原则是使其高易求,常把底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的思想,将不规则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。