2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3

2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3

ID:44866558

大小:227.64 KB

页数:7页

时间:2019-10-31

2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3_第1页
2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3_第2页
2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3_第3页
2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3_第4页
2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3_第5页
资源描述:

《2019_2020学年高中数学第3章概率3.1.1随机事件的概率学案新人教A版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.1 随机事件的概率学习目标核心素养1.了解随机事件、必然事件、不可能事件的含义.(重点)2.会初步列出重复试验的结果.(重点)3.理解频率与概率的区别与联系.(难点、易混点)通过概率的学习,培养数学抽象素养.1.必然事件、不可能事件与随机事件事件类型定义必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件确定事件必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件事件

2、确定事件与随机事件统称为事件,一般用大写字母A,B,C……表示2.频率与概率(1)频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)概率随机事件发生可能性的大小用概率来度量,概率是客观存在的.对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可用频率fn(A)来估计概率P(A),即P(A)≈.思考:两位同学在相同的条件下,都抛掷一枚硬币100次,得到正面向上的频率一定相同吗?[提示] 不一定.1.事件“经过有信号灯的路口,

3、遇上红灯”是(  )A.必然事件B.不可能事件C.随机事件D.以上均不正确[答案] C 2.下列说法正确的是(  )A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定C [由频率与概率的有关概念知,C正确.]3.“同时抛掷两枚质地均匀的硬币,记录正面向上的枚数”,该试验的结果共有________种.3 [正面向上的枚数可能为0,1,2,共3种结果.]4.某人射击10次,恰有8次击中靶子,则该人击中靶子的频率是________.0.8 [=0.8.]事件类型的判断【例1】 

4、指出下列事件是必然事件、不可能事件,还是随机事件:(1)中国体操运动员将在下一届奥运会上获得全能冠军;(2)出租车司机小李驾车通过4个十字路口都将遇到绿灯;(3)若x∈R,则x2+1≥1;(4)小红书包里只有数学书、语文书、地理书、政治书,她随意拿出一本,是漫画书.[解] (1)(2)中的事件可能发生,也可能不发生,所以是随机事件;(3)中的事件一定会发生,所以是必然事件;(4)中小红书包里没有漫画书,所以是不可能事件.判断事件类型的思路判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还

5、是一定不会发生(不可能事件).1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②当“x为某一实数时可使x2<0”是不可能事件;③“每年的国庆节都是晴天”是必然事件;④“从100个灯泡(有10个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是(  )A.4 B.3C.2D.1B [③“每年的国庆节都是晴天”是随机事件,故错误;①②④的判断均正确.]试验结果的列举【例2】 设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?(2)“a=b”这一事件包含哪几

6、个基本事件?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?[解] 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).(2)“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax+by=0的斜率k=->-1,所以<1.所以a

7、件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).不重不漏地列举试验的所有可能结果的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件.(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树状图、列表等方法解决.2.下列随机事件中,一次试验各指什么?试写出试验的所有结果.(1)抛掷两枚质地均匀的硬币;(2)从集合A={a,b,c,d}中任取3个元素组成集合A的子集.[解] (1)一次试验是指“抛掷两枚

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。