专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)

专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)

ID:44844176

大小:4.47 MB

页数:68页

时间:2019-10-30

专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)_第1页
专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)_第2页
专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)_第3页
专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)_第4页
专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)_第5页
资源描述:

《专题02 函数-三学年高考(2015-2017)数学(文)试题(附解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题02函数-三年高考(2015-2017)数学(文)试题【2017年高考试题】1.【2017课标1,文8】函数的部分图像大致为A.B.C.D.【答案】C【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.2.【2017课标3,文7】函数的部分图像大致为()ABD.CD【答案】D【考点】函数图像【名师

2、点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系3.【2017浙江,5】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无

3、关,但与b有关【答案】B【解析】试题分析:因为最值在中取,所以最值之差一定与无关,选B.【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.4.【2017北京,文5】已知函数,则(A)是偶函数,且在R上是增函数(B)是奇函数,

4、且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是增函数【答案】B【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义与的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为10

5、80.则下列各数中与最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093【答案】D【解析】试题分析:设,两边取对数,,所以,即最接近,故选D.【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是时,两边取对数,对数运算公式包含,,.6.【2017山东,文9】设,若,则A.2B.4C.6D.8【答案】C【考点】分段函数求值【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选

6、定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.7.【2017天津,文6】已知奇函数在上是增函数.若,则的大小关系为(A)(B)(C)(D)【答案】【解析】试题分析:由题意:,且:,据此:,结合函数的单调性有:,即,本题选择C选项.【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数

7、运算法则,,再比较比较大小.8.【2017课标II,文8】函数的单调递增区间是A.B.C.D.【答案】D【解析】函数有意义,则:,解得:或,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为.故选D.【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利

8、用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.9.【2017课标1,文9】已知函数,则A.在(0,2)单调递增B.在(0,2)单调递减C.y=的图像关于直线x=1对称D.y=的图像关于点(1,0)对称【答案】C【考点】函数性质【名师点睛】如果函数,,满足,恒有,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.10.【2017山东,文10

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。