欢迎来到天天文库
浏览记录
ID:44752401
大小:82.00 KB
页数:3页
时间:2019-10-27
《2017学年九年级数学上册27.3反比例函数的应用反比例函数在实际生活中的四种运用素材(新版)冀教版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、反比例函数在实际生活中的四种运用一、在电学中的运用在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。例1在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5时,求电阻R的值.(1)解:设I= ∵R=5,I=2,于是=2×5=10,所以U=10,∴I=.(2)当I=0.5时,R===20(欧姆).点评:反比例函数与现实生活
2、联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础。用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.二、在光学中运用例2近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1000度近视眼镜镜片的焦距.分析:把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=,把x=0.25,y=400代入,得
3、400=,所以,k=400×0.25=100,即所求的函数关系式为y=.(2)当y=1000时,1000=,解得=0.1m.点评:生活中处处有数学。用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,因此同学们要学好物理,首先要打好数学基础,才能促进你对物理知识的理解和探索。三、在排水方面的运用例3如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,
4、那么每小时的排水量应该是多少?(4)如果每小时排水量是5000m3,那么水池中的水将要多少小时排完?分析:当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例3所以根据图象提供的信息可知此蓄水池的蓄水量为:4000×12=48000(m3).(2)因为此函数为反比例函数,所以解析式为:V=;(3)若要6h排完水池中的水,那么每小时的排水量为:V==8000(m3);(4)如果每小时排水量是5000m3,那么要排完水池中的水所需时间为:t==
5、8000(m3)点评:学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理。四、在解决经济预算问题中的应用. 例4某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?解:(1)∵y与x-0.4成反比例,∴设y
6、=(k≠0).把x=0.65,y=0.8代入y=,得0.8=,解得k=0.2,∴y= ∴y与x之间的函数关系为y=(2)根据题意,本年度电力部门的纯收入为:(0.6-0.3)(1+y)=0.3×2=0.6(亿元)答:本年度的纯收人为0.6亿元。点评:在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
此文档下载收益归作者所有