高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版

高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版

ID:44688171

大小:2.47 MB

页数:9页

时间:2019-10-24

高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版_第1页
高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版_第2页
高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版_第3页
高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版_第4页
高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版_第5页
资源描述:

《高考数学一轮复习高考大题增分课一函数与导数中的高考热点问题教学案文含解析北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、(一) 函数与导数中的高考热点问题[命题解读] 1.函数是中学数学的核心内容,导数是研究函数的重要工具,因此,函数与导数是历年高考的重点与热点.2.常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等.3.涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.利用导数研究函数的性质函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数

2、的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.【例1】 (2018·天津高考节选)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极值.[解] (1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(

3、2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t-9)x-t+9t2.故f′(x)=3x2-6t2x+3t-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,t2-)t2-(t2-,t2+)t2+(t2+,+∞)f′(x)+0-0+f(x)↘极大值↗极小值↘所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数f(x)的极小值为f(t2+)=()3-9×=-6.[规律方法] 1.研究函数的性质,必须在定义域内进行,因此利用导数

4、研究函数的性质,应遵循定义域优先的原则.2.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f′(x)的符号问题上,而f′(x)>0或f′(x)<0,最终可转化为一个一元一次不等式或一元二次不等式问题.3.若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.(2019·合肥模拟)已知函数f(x)=alnx+x2-ax(a∈R).(1)若x=3是f(x)的极值点,求f(x)的单调区间;(2)求g(x)=f(x)-2x在区间[1,e]的最小值h(a).[解] (1)f(x)的定义域为(0,+∞),f′(x)=+2x-a=,因为x

5、=3是f(x)的极值点,所以f′(3)==0,解得a=9.所以f′(x)==,所以当0<x<或x>3时,f′(x)>0;当<x<3时,f′(x)<0.所以f(x)的递增区间为和(3,+∞),递减区间为.(2)由题知,g(x)=f(x)-2x=alnx+x2-ax-2x.g′(x)=-2=.①当≤1,即a≤2时,g(x)在[1,e]上为增函数,h(a)=g(1)=-a-1;②当1<<e,即2<a<2e时,g(x)在上为减函数,在上为增函数,h(a)=g=aln-a2-a;③当≥e,即a≥2e时,g(x)在[1,e]上为减函数,h(a)=g(e)=(1-e)a+e2-2e.综上,h(

6、a)=利用导数研究函数的零点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图像交点的个数;(2)由函数的零点、图像交点的情况求参数的取值范围.【例2】 (本小题满分12分)(2018·全国卷Ⅱ)已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.[信息提取] 看到(1)求单调区间,想到导数与单调性的关系;看到(2)f(x)只有一个零点,想到f(x)的单调性及函数有零点的条件.[规范解答] (1

7、)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或x=3+2.2分当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.4分故f(x)在(-∞,3-2),(3+2,+∞)上递增,在(3-2,3+2)上递减.5分(2)证明:由于x2+x+1>0,所以f(x)=0等价于-3a=0.7分设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。