欢迎来到天天文库
浏览记录
ID:44603555
大小:367.45 KB
页数:12页
时间:2019-10-24
《将军饮马—最短路径最值问题教学设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、将军饮马—最短路径最值问题教学设计=J一、教学内容解析为了解决生产,经营屮省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题.初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为理论基础,有吋还要借助轴对称、平移、旋转等变换进行研究.本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题一一“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题•从
2、中,让学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与能力转化上起到桥梁作用。基于以上分析,本节课的教学重点确定为:[教学重点]利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.二、教学目标解析新课程标准明确耍求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题
3、、情感与态度等方面得到发展.因此,确定教学目标如下:[教学目标]能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题屮的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.[目标解析]达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点Z间,线段最短”问题,能通过逻辑推理证明
4、所求距离最短,在探索问题的过程中,体会轴对称、平移的作用,体会感悟转化的数学思想.三、学生学情诊断八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上.最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是而对具有实际背景的最值问题,更会感到陌生,无从下手.解答:“当点A、B在直线/的同侧时,如何在/上找点C,使AC与CB的和最小”,需要将其转化为''直线I异侧的两点,与I上的点的线段和最小”的问题,为什么需要这
5、样转化,怎样通过轴对称实现转化,一些学生会存在理解和操作方面的困难.在证明“最短”时,需要在直线上任取一点,证明所连线段和大于或等于所求作的线段和.这种思路和方法,一些学生还想不到.在解答“使处在直线两侧的两线段和最小”的问题,需要把它们平移拼接在一起,一些学生想不到.教学时,教师可以让学生首先思考“直线/的异侧的两点,与/上的点的线段和最小”,给了学生启发,在证明“最短”时,点拨学生耍另选一个量,通过与求证的那个量进行比较来证明,同时让学生体会“任意”的作用,因此确定本节课的教学难点为:[教学难点]如何利用轴对称将最短路径问题转化为线段和最小
6、问题.四、教学策略分析建构主义理论的核心是“知识不是被动接受的而是认知主体枳极建构的.”根据本节课的教学目标、教材内容以及学生的认知特点和实际水平,教学上采用“引导——探究一一发现一一证明一一归纳总结”的教学模式,鼓励引导学生、开动脑筋、大胆尝试,在探究活动中培养学生创新思维与想彖能力.教师的教法:突出解题方法的引导与启发,注重思维习惯的培养,为学生搭建参与和交流的平台.通过对“将军饮马问题”而改编与设计,增强数学课堂趣味性,相同背景,不同问题,由浅入深、层层递进,有利于学生分析与解决问题,同时利用现代的信息技术,直观地展示图形的变化过程,提高
7、学生学习兴趣与激情.学生的学法:突出探究与发现,思考与归纳提升,在动手探究、自主思考、互动交流中,获取知识与能力.五、教学基本流程探索新知一一运用新知一一拓展新知一一提炼新知一课外思考六、教学过程设计(一)探索新知1、建立模型问题1唐朝诗人李斤页的诗《古从军行》开头两句说:“片口登11」望烽火,黄昏饮马傍交河”.诗屮隐含着一个有趣的数学问题.如图1所示,诗屮将军在观望烽火Z后从山脚下的指挥部A地出发,到一条笔直的河边/饮马,然后到军营B地,到河边什么地方饮马可使他所走的路线全程最短?追问1,这是一个实际问题,你打算首先做什么呢?师生活动:将A、
8、B两地抽象为两个点,将河/抽象为一条直线B■A追问2,你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?师生活动:学生交流讨论,回答并相互
此文档下载收益归作者所有