欢迎来到天天文库
浏览记录
ID:44592081
大小:458.71 KB
页数:10页
时间:2019-10-23
《2019_2020学年高中数学第1章立体几何初步1.2.3空间中的垂直关系(第2课时)平面与平面垂直学案新人教B版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 平面与平面垂直学习目标核心素养1.了解面面垂直的定义.(重点)2.掌握面面垂直的判定定理和性质定理.(重点)3.灵活运用线面、面面垂直的判定定理和性质定理解决空间中的位置关系问题.(难点)1.通过平面与平面垂直的定义学习,培养直观想象的核心素养.2.借助线面垂直的判定定理与性质定理,培养逻辑推理、数学抽象的核心素养.1.平面与平面垂直的判定(1)平面与平面垂直①定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.②画法:记作:α⊥β.(2)判定定理文字语言图形语言符号语言如果一个
2、平面过另一个平面的一条垂线,则这两个平面垂直⇒α⊥β2.平面与平面垂直的性质定理文字语言如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面符号语言⇒a⊥β图形语言思考:若定理中的“交线”改为“一条直线”,结论会是什么?[提示] 相交或平行.1.△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是( )A.相交 B.异面C.平行D.不确定C [因为l⊥AB,l⊥AC且AB∩AC=A,所以l⊥平面ABC.同理可证m⊥平面ABC,所以l∥m,故选C.]2.设平面α⊥平面β,在平面α内的一条
3、直线a垂直于平面β内的一条直线b,则( )A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直C [当α⊥β,在平面α内垂直交线的直线才垂直于平面β,因此,垂直于平面β内的一条直线b的直线不一定垂直于β,故选C.]3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有( )A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBCD [∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BCD.又∵AD⊂平面ADC,∴平面ADC⊥平面DBC.]4.平
4、面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.平行 [因为α⊥β,α∩β=l,n⊂β,n⊥l,所以n⊥α.又m⊥α,所以m∥n.]平面与平面垂直的判定【例1】 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上异于A、B的任意一点,求证:平面PAC⊥平面PBC.[证明] 连接AC,BC,则BC⊥AC,又PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,而PA∩AC=A,∴BC⊥平面PAC,又BC⊂平面PBC,∴平面PAC⊥平面PBC.证明面面垂直的方法1.判定定理法:在其中一个平面内寻找一条直线与另
5、一个平面垂直,即把问题转化为“线面垂直”;2.性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.1.如图,四棱锥PABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.求证:平面AEC⊥平面PDB.[证明] ∵AC⊥BD,AC⊥PD,PD,BD为平面PDB内两条相交直线,∴AC⊥平面PDB.又∵AC⊂平面AEC,∴平面AEC⊥平面PDB.面面垂直性质定理的应用【例2】 如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是边长为a的菱形且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD的
6、中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.[思路探究] (1)―→―→(2)要证AD⊥PB,只需证AD⊥平面PBG即可.[证明] (1)如图,在菱形ABCD中,连接BD,由已知∠DAB=60°,∴△ABD为正三角形,∵G是AD的中点,∴BG⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴BG⊥平面PAD.(2)如图,连接PG.∵△PAD是正三角形,G是AD的中点,∴PG⊥AD,由(1)知BG⊥AD.又∵PG∩BG=G.∴AD⊥平面PBG.而PB⊂平面PBG,∴AD⊥PB.1.面面垂直的性质定理,为线面垂直的判定提供了依据和
7、方法.所以当已知两个平面垂直的时候,经常找交线的垂线,这样就可利用面面垂直证明线面垂直.2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.2.如图所示,四棱锥VABCD的底面是矩形,侧面VAB⊥底面ABCD,又VB⊥平面VAD.求证:平面VBC⊥平面VAC.[证明] ∵平面VAB⊥底面ABCD,且BC⊥AB,平面VAB∩平面ABCD=AB.∴BC⊥平面VAB,∴BC⊥VA,又VB⊥平面VAD,∴VB⊥VA,又VB∩BC=B,∴VA⊥平面VBC,∵VA⊂平面VAC.∴平面VBC⊥平面VAC.垂直关系的综合
8、应用[探究问题]1.如图所示,在四棱锥PABCD中,
此文档下载收益归作者所有