2.3《平面向量的基本定理及坐标表示》

2.3《平面向量的基本定理及坐标表示》

ID:44441005

大小:333.00 KB

页数:22页

时间:2019-10-22

2.3《平面向量的基本定理及坐标表示》_第1页
2.3《平面向量的基本定理及坐标表示》_第2页
2.3《平面向量的基本定理及坐标表示》_第3页
2.3《平面向量的基本定理及坐标表示》_第4页
2.3《平面向量的基本定理及坐标表示》_第5页
资源描述:

《2.3《平面向量的基本定理及坐标表示》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1、平面向量的坐标表示与平面向量分解定理的关系。2、平面向量的坐标是如何定义的?3、平面向量的运算有何特点?平面向量的基本定理及坐标表示类似地,由平面向量的分解定理,对于平面上的任意向量,均可以分解为不共线的两个向量和使得a→11λa→22λa→=a→11λa→+22λa→在不共线的两个向量中,垂直是一种重要是情形,把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。平面向量的正交分解思考:我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。我们把(x,y

2、)叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,(x,y)叫做向量的坐标表示。ayjiO图1xxiyj平面向量的坐标表示a=xi+yj(1,0)(0,1)(0,0)i=j=0=→→→其中i,j为向量i,j→→→→→ayjiO图1xxiyj其中xi为xi,yj为yj→→yxOyxjA(x,y)a如图,在直角坐标平面内,以原点O为起点作OA=a,则点A的位置由a唯一确定。设OA=xi+yj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标。因此,在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表

3、示。i例1如图,用基底i,j分别表示向量a、b、c、d,并求出它们的坐标。jyxOiaA1AA2bcd解:由图3可知a=AA1+AA2=2i+3j,∴a=(2,3)同理,b=-2i+3j=(-2,3)c=-2i-3j=(-2,-3)d=2i-3j=(2,-3)平面向量的坐标运算思考:已知,你能得出,,的坐标吗?11a=(x,y)22b=(x,y)a+b-abλa→→→→→→→已知,a=(x1,y1),b=(x2,y2),则a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j即a+b=(x1+x2,y1+y2)同理可得a-b=(x1-x2,y1-y2)这就是说,

4、两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。平面向量的坐标运算结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标。yxOB(x2,y2)A(x1,y1)如图,已知A(x1,y1),B(x2,y2),则AB=OB-OA=(x2,y2)-(x1,y1)=(x2-x1,y2-y1)yxOB(x2,y2)A(x1,y1)你能在图中标出坐标为的P点吗?P已知a=(x,y)和实数λ,那么λa=λ(x,y) 即λa=(λx,λy)这就是说,实数与向量的积的坐标等用这个实数乘以原来向量的相应坐标。例2已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b例3已知

5、平行四边形ABCD的三个定点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标例4已知平行四边形ABCD的三个定点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标练习平行四边形ABCD的对角线交于点O,且知道AD=(3,7),AB=(-2,1),求OB坐标。设a=(x1,y1),b=(x2,y2),其中b是非零向量,那么可以知道,a//b的充要条件是存在一实数λ,使a=λb这个结论如果用坐标表示,可写为(x1,y1)=λ(x2,y2)即x1=λx2y1=λy2平面向量共线的坐标表示问题:共线向量如何用坐标来表示呢?消去λ后得也就是说,a

6、//b(b≠0)的等价表示是x1y2-x2y1=0x1y2-x2y1=0练习:下列向量组中,能作为表示它们所在平面内所有向量的基底,正确的有()(1)e1=(-1,2),e2=(5,7)(2)e1=(3,5),e2=(6,10)(3)e1=(2,-3),e2=(1/2,-3/4)例5、已知a=(4,2),b=(6,y),且a//b,求y的值。例6、已知A(-1,-1),B(1,3),C(2,5),判断A、B、C三点的位置关系。ABC

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。