采样系统研究

采样系统研究

ID:44275303

大小:899.46 KB

页数:11页

时间:2019-10-20

采样系统研究_第1页
采样系统研究_第2页
采样系统研究_第3页
采样系统研究_第4页
采样系统研究_第5页
资源描述:

《采样系统研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、电气工程学院《自动控制理论》实验报告姓名:王任良学号:11291088同组人:无指导教师:王喜莲实验日期:2013年12月9日采样系统研究实验成绩评定表姓名王任良学号11291088实验名称:采样系统研究实验验收或提问记录:无成绩评定依据:实验预习报告及方案设计情况(30%):实验考勤情况(15%):实验操作情况(30%):实验总结报告与答辩情况(25%):最终评定成绩:指导教师签字:2013年12月7日采样系统研究一实验报告姓名:王任良学号:11291088指导教师:王喜莲实验台号:8一、实验目的1.了解信号的采样与恢复的原理及其过程,并验证香农定理

2、。2.掌握采样系统的瞬态响应与极点分布的对应关系。3.掌握最少扌白采样系统的设计步骤。二、实验预习1.采样:把连续信号转换成离散信号的过程叫采样。2.香农定理:如果选择的采样角频率©,满足©>2血叭条件(©和为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。3.信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。其传递函数:;S1)采样系统的极点分布对瞬态响应的影响:Z平而内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。Figure1Z平面内的极点分布2)最小拍无差系统

3、:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期來表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整吋间为有限个采样周期。从上面的准则岀发,确定一个数字控制器,使其满足最小拍无差系统。三、实验仪器与设备1.XMN-2型电了模拟机一台。2.PC机一台。3.数字式万用表一块。四、实验内容1.通过改变采频率T=0.01$,0.2$,0.5$,观察在阶跃信号作用下的过渡过程。被控对象模拟电路及系统结构分别

4、如下图所示:UoFigure2被控对象模拟电路LFigure3系统结构图Y(z)上图中,Q(z)二〃(z)/E(z)=l,系统被控对象脉冲传递函数为:“⑵一1—严4(1一尹)系统开环脉冲传递函数为:4(1厂)①⑵系统闭环脉冲传递函数为:i+G「(z)在Z平面内讨论,当采样周期T变化时对系统稳定性的影响。G(s)=—1—2.当采样周期T=ls时,$"+1),设计Q"),使该系统在单位阶跃信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。R4Figure4被控对象模拟电路%Figure5系统结构图六、实验数据图像及与理论计算和仿真分析比较结果1

5、、系统模拟运算电路图:Figure6采样系统模拟运算电路图4开环传递函数:G(5)=--,电路中参数如下:5+1/?4=1MQ,/?3=1MQ,/?2=400KQ,/?1=1OOKQ,Cl=luf:2、改变采样频率,观察过渡过程:(1)采样时间T=0.01s:理论仿真:Figure7采样时间T=0.01s(仿真)实测输出:Figure8采样时间T二0.01s(实测)(2)采样吋间T二0.2s:理论仿真:Figure9釆样时间T二0.2s(仿真)实测输出:UM益0・■an<>4IMJUB尬斯建Bicros^ft0.Figure10釆样时间T二0.2s(实

6、测)0:29(3)采样时间T=0.5s:理论仿真:昌自ppp盹逼国0实测输岀:Scope01562赣连BicroB^ft0-J4IUTLaBFigure12釆样时间T二0.5s(实测)3、最小拍无差系统模拟运算电路图:4、设计最小拍无茅系统,观察并记录理论与实际系统输出波形:G(s)=—!—采样周期:T二Is;传递函数:$"+1)理论仿真:Scope马旨PPP抻迢见0IFigure13最小扌门无差系统理论仿真实测输出:Figure14最小扌

7、1无差系统实际输出结果分析:1.数字控制器D(z)的设计过程:根据最少拍系统结构图,对传递函数进行Z变换,同时考

8、虑零阶保持器的传递函数,可得:G(5)=——(1)S($+l)Z变换:0.36&+0.264(z—l)(z—0.368)(2)对单位阶跃信号r(r)=l(r)作用最少拍无差系统的闭环传递函数为:根据D⑵的计算方程:1如)G⑵1—0(z)(4)将以上(2)(3)式代入(4)式,最少拍无差系统的闭环传递函数为:D(z)=z-0.3680.368z+0.264七、思考题稳定性影响:由系统结构可得开环传递函数:亠、*1-严)4nG(z)=Z[1S5+1化简可得:亠、”-lwr414(1-厂)G(z)=(lz)Z[z]=_Ts($+l)z-e由此计算闭环传递函数

9、:[R(z)—y(z)]G(z)=y⑵G⑵1+G⑵4-4e'Tz+4-5e~rfa)=z-(5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。