1.2.2空间中的平行关系

1.2.2空间中的平行关系

ID:44243079

大小:159.85 KB

页数:7页

时间:2019-10-20

1.2.2空间中的平行关系_第1页
1.2.2空间中的平行关系_第2页
1.2.2空间中的平行关系_第3页
1.2.2空间中的平行关系_第4页
1.2.2空间中的平行关系_第5页
资源描述:

《1.2.2空间中的平行关系》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2.2.4 平面与平面平行的性质A组1.a∥α,b∥β,α∥β,则a与b的位置关系是(  )A.平行B.异面C.相交D.平行或异面或相交解析:如图①②③,a与b的关系分别是平行、异面或相交.答案:D2.已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中(  )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:由直线a与点B确定一个平面,记为γ,设γ∩β=b,∵α∥β,a⊂α,∴a∥β.∴a∥b.只有此一条.答案:D3.设平面α∥平面β,点A∈α,点B∈β,C是AB的中点,当点A,B分别在平面α,β内

2、运动时,那么所有的动点C(  )A.不共面B.不论点A,B如何移动,都共面C.当且仅当点A,B分别在两条直线上移动时才共面D.当且仅当点A,B分别在两条给定的异面直线上移动时才共面解析:动点C移动的轨迹一定是在平面α与β之间且与它们等距离的一个平面.答案:B4.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是(  )A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b解析:选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a

3、,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a与b相交,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言,故选D.答案:D5.下列说法正确的是(  )A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行解析:平行于同一条直线的两个平面可以平行也可以相交,所以A错;B正确;C中没有指明这三个点

4、在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只要b,c不在其平面内,则与b,c均平行.答案:B6.过正方体ABCD-A1B1C1D1的三个顶点A1,C1,B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是     . 解析:因为过A1,C1,B三点的平面与底面A1B1C1D1的交线为A1C1,与底面ABCD的交线为l,由于正方体的两底面互相平行,则由面面平行的性质定理知l∥A1C1.答案:l∥A1C17.如图所示,已知A,B,C,D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形E

5、FHG的形状是     . 解析:平面ADC∩α=EF,且CD∥α,得EF∥CD;同理可证GH∥CD,EG∥AB,FH∥AB.∴GH∥EF,EG∥FH.∴四边形EFGH是平行四边形.答案:平行四边形8.如图,在三棱柱ABC-A1B1C1中,D,D1分别是AC,A1C1上的点,若平面BC1D∥平面AB1D1,求ADDC的值.解:连接A1B,交AB1于点O,连接D1O.由题意知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,平面A1BC1∩平面AB1D1=D1O,因此BC1∥D1O,同理AD1∥DC1.∴A1D1C1D1=A1OOB,A1D1D1C1

6、=DCAD.又∵A1OOB=1,∴DCAD=1,即ADDC=1.9.如图所示的一块四棱柱木料ABCD-A1B1C1D1,底面ABCD是梯形,且CD∥AB.(1)要经过面A1B1C1D1内的一点P和侧棱DD1将木料锯开,应怎样画线?(2)所画的线之间有什么位置关系?解:(1)如图所示,连接D1P并延长交A1B1于E,过E作EF∥AA1交AB于F,连接DF,则D1E,EF,FD就是应画的线.(2)∵DD1∥AA1,EF∥AA1,∴D1D∥EF.∴D1D与EF确定一个平面α.又∵平面AC∥平面A1C1,α∩平面AC=DF,α∩平面A1C1=D1E,∴D1E∥DF.显然DF,D

7、1E都与EF相交.B组1.在长方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E,F,则四边形D1EBF的形状是(  )                A.矩形B.菱形C.平行四边形D.正方形解析:如图,在长方体ABCD-A1B1C1D1中,平面ABB1A1∥平面CDD1C1,过D1B的平面BED1F与平面ABB1A1交于直线BE,与平面CDD1C1交于直线D1F.由面面平行的性质定理,则BE∥D1F.同理BF∥D1E.所以四边形D1EBF为平行四边形.答案:C2.如果平面α∥平面β,夹在α和β间的两线段相等,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。