资源描述:
《闭模糊拟阵算法研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、摘要模糊拟阵是将“模糊"的概念引入到拟阵理论中而建立起來的理论,已冇近20年的丿力史。目前,已经建立了模糊拟阵的基木理论框架。研究的内容包扌舌模糊拟阵的独立集,模糊基,模糊圈,模糊秩函数,模糊超平而,模糊闭包算子,模糊子拟阵,准模糊图拟阵,模糊图拟阵,模糊拟阵的对偶和模糊拟阵的运算等等。本文在现有拟阵和模糊拟阵理论的基础上,研究了闭正规模糊拟阵及其基本序列,闭模糊拟阵的模糊基及算法、模糊圈及算法等内容,现分述如下:1)研究了闭正规模糊拟阵的一些性质,得到了闭正规模糊拟阵的充要条件及其模糊对偶拟阵的一个性质;2)研究了闭模糊拟阵模糊基的性质,找到了
2、闭模糊拟阵模糊基的充要条件和几个推论,最后还给出了求模糊基的算法;3)研究了闭模糊拟阵模糊圈的性质,找到了用基木序列来表达模糊圈的几个充要条件,并给出了求模糊圈的算法;4)研究了闭正规模糊拟阵的基本序列,找到了闭正规模糊拟阵的基本序列的几个充要条件。本论文研究的模糊拟阵的基本序列、模糊基及算法、模糊圈及算法都是模糊拟阵的重要内容,丰富了模糊拟阵理论,对于推动模糊拟阵从基础研究逐渐向应用研究的转变起着重要作用。关键词:模糊集,拟阵,模糊拟阵,基本序列,模糊基,模糊圈,算法ABSTRACTFuzzymatroidsisatheorywhichisse
3、tupbyintroducingthenotionUfuzzy5,intotheoryofmatroid,ithasexistednearly20yearsold.Atpresent,thebasicframeoffuzzymatroidshasbeensetup.Thestudyincludesthefuzzyindependentset,fuzzybases,fuzzycircuits,fuzzyrank,fuzzyhyperplanes,fuzzyclosureoperator,fuzzysubmatroid,quasi・hizzygrap
4、hmatroids,fuzzygraphicmatroids,fuzzydualmatroidandsoon.Basedontheexistedtheoryofmareoidsandfuzzymatroids,thisthesisstudiestheclosedregularfuzzymatroidanditsfundamentalsequence,thefuzzybaseanditsalgorithmofclosedfuzzymatroids,thefuzzycircuitanditsalgorithmofclosedfuzzymatroids
5、andsoon.Themaincontributionsofthisthesisareasfollows:1)Thenecessaryandsufficientconditionofclosedregularfuzzymatroidandapropertyofitsfuzzydualmatroidarefoundbystudyingsomepropertiesofclosedregularfuzzymatroid・2)Bystudyingsomepropertiesoffuzztbasesofclosedfuzzymatroid,theneces
6、saryandsufficientconditionofjudgingfuzzybasesofclosedfuzzymatroidsandsomecorollariesarefound・Intheend,analgorithmofobtainingafuzzybaseisgiven.3)Bystudyingsomepropertiesoffuzztcircuitsofclosedfuzzymatroid,somenecessaryandsufficientconditionsofusingitsfundamentalsequencetoexpre
7、ssfuzzycircuitsarefound.Analgorithmofobtainingafuzzycircuitisgiven.4)Bystudyingthefundamentalsequenceofclosedregularfuzzymatroid,somenecessaryandsufficientconditionsoffundamentalsequenceofclosedregularfuzzymatroidarefound.Thefundamentalsequence,fuzzybasesanditsalgorithm,fuzzy
8、circuitsanditsalgorithmarestudiedinthisthesisareallimportanttopicsin