立体图形中的距离最短问题

立体图形中的距离最短问题

ID:43741735

大小:202.51 KB

页数:7页

时间:2019-10-13

立体图形中的距离最短问题_第1页
立体图形中的距离最短问题_第2页
立体图形中的距离最短问题_第3页
立体图形中的距离最短问题_第4页
立体图形中的距离最短问题_第5页
资源描述:

《立体图形中的距离最短问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、立体图形中的距离最短问题根据新课程标准,培养学生的空间观念主要表现在:“能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;……”。空间图形的建立需要有一个循序渐进的过程,从小学到初中,再到高中,渐渐加强,作为一个初、高中的知识衔接模块,让学生在初中阶段能理解空间图形,特别是空间图形的展开图,夯实基础,显得尤为重要。立体图形上点点之间的距离最短问题,通过把立体图形转化为平面图形,然后再运用“两点之间,线段最短”来解决。解决这一类距离最短的问题,可以利用轴对称或平移或旋转等几何图形的变换,把两条或多条线

2、段和最短的问题转化为平面上两点之间的距离最短的问题来解决。一、通过平移来转化1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?析:展开图如图所示,AB==13cm二、通过旋转来转化2.有一圆柱形油罐,已知油罐周长是12m,高AB是5m,要从点A处开始绕油罐一周建造梯子,正好到达A点的正上方B处,问梯子最短有多长?析:展开图如图所示,AB==13cm3.有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若

3、蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离。AB=4,BC为底面周长的一半即BC=5πAC===4.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线--螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm,绕一圈升高(即圆柱的高)40cm,则它爬行一圈的路程是多少?(2)如果树干的周长为80cm,绕一圈爬行100cm,它爬行10圈到达树顶,则树干高多少?(1)如图,⊙O的周长为30cm,即AC=30cm,高是40cm,则BC=40cm,由勾股

4、定理得AB=50cm.故爬行一圈的路程是50cm;(2)⊙O的周长为80cm,即AC=80cm,绕一圈爬行100cm,则AB=100cm,高BC=60cm.∴树干高=60×10=600cm=6m.故树干高6m5.已知O为圆锥顶点,OA、OB为圆锥的母线,C为OB中点,一只小蚂蚁从点C开始沿圆锥侧面爬行到点A,另一只小蚂蚁绕着圆锥侧面爬行到点B,它们所爬行的最短路线的痕迹如右图所示.若沿OA剪开,则得到的圆锥侧面展开图为()A.B.C.D.要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果,再利用做对称点作出另一只小蚂蚁绕着圆锥侧面爬行到点B,它们所爬

5、行的最短路线.故选C6.如图,一直圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A点出发,绕圆锥的侧面爬行一周后又回到A点,则蚂蚁爬行的最短路线长是______(结果保留根式)。 设圆锥的展开图扇形QAA’的中心角∠AQA’的度数为n,则2×2×π=,解得:n=90° 即∠AQA’=90°在Rt△AQA’中,根据勾股定理, AA’=错误!未定义书签。7.如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm,假若点B有一蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC的中点P处的食物,那么它爬行的最短路程是多少?设圆锥的展开图的圆心角为n,则.2×2×π=,解得:n=18

6、0° 即∠CQC’=180°在展开图中,BA⊥CC’,BA=4,AP=2,由勾股定理得,BP==根据圆锥的主视图是等边三角形可知,展开图是半径是4的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只蚂蚁爬行的最短距离.圆锥的展开图的圆心角=.主视图是等边三角形的圆锥的展开图的圆心角是180°.本题主要考查了圆锥的侧面展开图的计算,正确判断蚂蚁爬行的路线,把曲面的问题转化为平面的问题是解题的关键.8.已知,圆锥底面半径为10cm,高为10cm,(1) 求圆锥的表面积;(2)  若一只蚂蚁从底面一点A出发绕圆锥一周回到S

7、A上一点M处,且SM=3AM,求它所走的最短距离。利用底面半径、高及母线组成的直角三角形构造勾股定理求出母线长,进而借助扇形面积公式求出表面积;蚂蚁在圆锥表面上行走一圈,而圆锥侧面展开后为扇形,故可在展开图(扇形)上求点A’到M的最短距离(即A’M的长)。解析:(1)圆锥的母线长SA==40,圆锥侧面展开图扇形的弧长l=2π×OA=20π(cm),∴S侧=×SA=400π(cm2),S底=π×OA2=100(cm2),∴S表=S底+S侧=500π(cm2) 。(2)沿母线SA将圆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。