欢迎来到天天文库
浏览记录
ID:43655453
大小:787.51 KB
页数:8页
时间:2019-10-11
《学案4:数列通项公式的求法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、学案4:数列通项公式的求法学案4:数列的通项公式求法姓名班级专题一:数列通项公式的求法一、观察法(关键是找出各项与项数n的关系.)例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2)(3)(4)二、公式法公式法1:特殊数列例2:已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),(1)求数列{an}和{bn}的通项公式;例3.等差数列是递减数列,且=48,=12,则数列的通项公式
2、是()(A)(B)(C)(D)例4.已知等比数列的首项,公比,设数列的通项为,求数列的通项公式.公式法2:知利用公式.例5:已知下列两数列的前n项和的公式,求的通项公式.8/8学案4:数列通项公式的求法三、 累加法【型如的递推关系】简析:已知,,其中f(n)是关于n的一次、指数函数、分式函数,求通项.①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的分式函数,累加后可裂项求和各式相加得例6、已知数列满足,求数列的通项公式。评注:本题解题的关键是把递推关系式转化为,进而求出,
3、即得数列的通项公式。例7、已知数列满足,,求此数列的通项公式.四、累积法【形如=(n)·型】当f(n)为n分式的函数时,用累乘法.例8、在数列{}中,=1,(n+1)·=n·,求的表达式.练习1(2004全国15)已知数列满足,求的通项公式。8/8学案4:数列通项公式的求法五、构造特殊数列法构造1:【形如,其中)型】(1)若c=1时,数列{}为等差数列;(2)若d=0时,数列{}为等比数列;(3)若且时,数列{}为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法:设,得,与题设比较系数得,所以:,即构成以为首项,以c为公比的等比数列.例9:已知数列的递推
4、关系为,且求通项.构造2:相邻项的差为特殊数列例10:在数列中,,,,求.构造3:倒数为特殊数列【形如】例11:已知数列{}中且(),,求数列的通项公式.构造4:与例12:已知数列满足,,求数列的通项公式。例13:已知数列满足,求数列的通项公式。8/8学案4:数列通项公式的求法例14:已知数列满足,求数列的通项公式。评注:符合形式的数列,可以两边同时除以,然后构造新的数列求通项公式.六、待定系数法:例15:设数列的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn点评:用待定系数法解题时,常先假定通项公式或前n项
5、和公式为某一多项式,一般地,若数列为等差数列:则,(b、c为常数),若数列为等比数列,则,.七、迭代法【一般是递推关系含有的项数较多】例16:(1)数列{}满足,且,求数列{an}的通项公式.(2)数列{}满足,且,求数列{an}的通项公式(3)已知数列中,求通项.8/8学案4:数列通项公式的求法学案4:数列的通项公式求法专题一:数列通项公式的求法一、观察法(关键是找出各项与项数n的关系.)例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2)(3)(4)答案:(1)(2)(3)(4).二、公式法公式法1:特殊数列例2:已知数列{
6、an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),(1)求数列{an}和{bn}的通项公式;答案:an=a1+(n-1)d=2(n-1);bn=b·qn-1=4·(-2)n-1例3.等差数列是递减数列,且=48,=12,则数列的通项公式是(D)(A)(B)(C)(D)例4.已知等比数列的首项,公比,设数列的通项为,求数列的通项公式.简析:由题意,,又是等比数列,公比为∴,故数列是等比数列,易得.点评:当数列为等差或等比数列
7、时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.公式法2:知利用公式.例5:已知下列两数列的前n项和sn的公式,求的通项公式.(1).(2)答案:(1)=3,(2)点评:先分n=1和两种情况,然后验证能否统一.三、 累加法【型如的递推关系】简析:已知,,其中f(n)可以是关于n的一次、指数函数、分式函数,求通项.①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的分式函数,累加后可裂项求和各式相加得8/8学案4:数列通项公式的求法例6、已知数列满足,求数列的通项
8、公式。解:
此文档下载收益归作者所有