有限元分析及应用

有限元分析及应用

ID:43626937

大小:3.36 MB

页数:277页

时间:2019-10-11

有限元分析及应用_第1页
有限元分析及应用_第2页
有限元分析及应用_第3页
有限元分析及应用_第4页
有限元分析及应用_第5页
资源描述:

《有限元分析及应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、有限元分析及应用第一章有限元法简介2有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个结点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,结点的数目也是有限的,所以称为有限元法(FEM,FiniteElementMethod)。3有限元法是最重要的工程分析技术之一。它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现

2、,它并未受到人们的重视。4随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。5有限元法的孕育过程及诞生和发展牛顿(Newton)莱布尼茨(LeibnizG.W.)6大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的

3、,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。7在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。高斯(Gauss)8在18世纪,另一位数学家拉格朗日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途径。拉格朗日(LagrangeJ.)9在19世纪末及20世纪初,数学家瑞利和里兹(RayleighRitz)首先提出可对全定义域运用展开函数来表达其上的未知函数。

4、瑞利(Rayleigh)101915年,数学家伽辽金(Galerkin)提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。1112(对象、变量、方程、求解途径)各力学学科分支的关系13(1)桥梁隧道问题14任意变形体力学分析的基本变量及方程研究对象:任意形状的变形体几种典型的对象圆形隧道三维模型15(2)中华和钟(3)矿山机械16(4)压力容器的成形17变形体及受力情况的描述18求解方法19有限元

5、方法的思路及发展过程思路:以计算机为工具,分析任意变形体以获得所有力学信息,并使得该方法能够普及、简单、高效、方便,一般人员可以使用。实现办法:20技术路线:21发展过程:如何处理对象的离散化过程22......常用单元的形状点(质量)线(弹簧,梁,杆,间隙)面(薄壳,二维实体,轴对称实体)二次体(三维实体)线性二次..线性..............................23点单元线单元一维波传导问题24点单元线单元25面单元282930受垂直载荷的托架31线性单元/二次单元更高阶的单元模拟曲面的精度就越高。低

6、阶单元更高阶单元体单元32有限元分析的作用复杂问题的建模简化与特征等效软件的操作技巧(单元、网格、算法参数控制)计算结果的评判二次开发工程问题的研究误差控制36第二章有限元分析的力学基础2.1变形体的描述与变量定义(1)变形体变形体:即物体内任意两点之间可发生相对移动。有限元方法所处理的对象:任意变形体38(2)基本变量的定义可以用以下各类变量作为任意变形体的描述因此,在材料确定的情况下,基本的力学变量应该有:位移、应变、应力量39目的:对弹性体中的位移、应力、应变进行定义和表达,进而建立平衡方程、几何方程和材料物理方程(

7、3)研究的基本技巧采用微小体积元dxdydz的分析方法(针对任意变形体)402.2弹性体的基本假设为突出所处理的问题的实质,并使问题简单化和抽象化,在弹性力学中,特提出以下几个基本假定。物质连续性假定:物质无空隙,可用连续函数来描述;物质均匀性假定:物体内各个位置的物质具有相同特性;物质(力学)特性各向同性假定:物体内同一位置的物质在各个方向上具有相同特性;线性弹性假定:物体的变形与外来作用的关系是线性的,外力去除后,物体可恢复原状;小变形假定:物体变形远小于物体的几何尺寸,在建立方程时,可以高阶小量(二阶以上)。以上基本

8、假定将作为问题简化的出发点。412.3基本变量的指标表达指标记法的约定:自由指标:在每项中只有一个下标出现,如,i,j为自由指标,它们可以自由变化;在三维问题中,分别取为1,2,3;在直角坐标系中,可表示三个坐标轴x,y,z。哑指标:在每项中有重复下标出现,如:,j为哑指标。在三维问题中其变化的范围为1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。