2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版

2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版

ID:43501489

大小:1000.86 KB

页数:22页

时间:2019-10-08

2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版_第1页
2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版_第2页
2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版_第3页
2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版_第4页
2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版_第5页
资源描述:

《2020版高考数学复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题教案理新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考专题突破四 高考中的立体几何问题题型一 平行、垂直关系的证明例1 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明 在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.因为AB⊂平面ABC,所以BB1⊥AB.又因为AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥

2、平面B1BCC1.(2)证明 方法一 如图1,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.方法二 如图2,取AC的中点H,连接C1H,FH.因为H,F分别是AC,BC的中点,所以HF∥AB,又因为E,H分别是A1C1,AC的中点,所以EC1∥AH,且EC1=AH

3、,所以四边形EAHC1为平行四边形,所以C1H∥AE,又C1H∩HF=H,AE∩AB=A,所以平面ABE∥平面C1HF,又C1F⊂平面C1HF,所以C1F∥平面ABE.(3)解 因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥E-ABC的体积V=S△ABC·AA1=×××1×2=.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺

4、序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练1 如图,在底面是矩形的四棱锥P—ABCD中,PA⊥底面ABCD,点E,F分别是PC,PD的中点,PA=AB=1,BC=2.(1)求证:E

5、F∥平面PAB;(2)求证:平面PAD⊥平面PDC.证明 (1)以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1).∵点E,F分别是PC,PD的中点,∴E,F,=,=(1,0,0).∵=-,∴∥,即EF∥AB,又AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.(2)由(1)可知,=(0,0,1),=(0,2,0),=(1,0,0),∵·=(0,

6、0,1)·(1,0,0)=0,·=(0,2,0)·(1,0,0)=0,∴⊥,⊥,即AP⊥DC,AD⊥DC.又AP∩AD=A,AP,AD⊂平面PAD,∴DC⊥平面PAD.∵DC⊂平面PDC,∴平面PAD⊥平面PDC.题型二 立体几何中的计算问题命题点1 求线面角例2 (2018·浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角

7、的正弦值.方法一 (1)证明 由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=2,所以A1B+AB=AA,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1=.由AB=BC=2,∠ABC=120°,得AC=2.由CC1⊥AC,得AC1=,所以AB+B1C=AC,故AB1⊥B1C1.又因为A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,所以AB1⊥平面A1B1C1.(2)解 如图,过点C1作C1D⊥A1B1,交

8、直线A1B1于点D,连接AD.由AB1⊥平面A1B1C1,得平面A1B1C1⊥平面ABB1.由C1D⊥A1B1,平面A1B1C1∩平面ABB1=A1B1,C1D⊂平面A1B1C1,得C1D⊥平面ABB1.所以∠C1AD即为AC1与平面ABB1所成的角.由B1C1=,A1B1=2,A1C1=,得cos∠C1A1B1=,sin∠C1A1B1=,所以C1D=,故sin∠C1AD==.因此直线AC1与平面ABB1所成的角的正弦值是.方法二 (1)证

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。