2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版

2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版

ID:28988865

大小:1.01 MB

页数:21页

时间:2018-12-15

2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版_第1页
2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版_第2页
2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版_第3页
2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版_第4页
2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版_第5页
资源描述:

《2019届高考数学大一轮复习第八章立体几何与空间向量高考专题突破四高考中的立体几何问题学案理北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考专题突破四 高考中的立体几何问题【考点自测】1.在正三棱柱ABC-A1B1C1中,D为BC的中点,E为A1C1的中点,则DE与平面A1B1BA的位置关系为(  )A.相交B.平行C.垂直相交D.不确定答案 B解析 如图取B1C1的中点为F,连接EF,DF,则EF∥A1B1,DF∥B1B,且EF∩DF=F,A1B1∩B1B=B1,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x,y,z是空间中不同的直线或平面,对下列四种情形:①x,y,z均为直线;②x,y是直线,z是平面;③z是直线,x,y是平面;④x,y,z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的

2、是(  )A.③④B.①③C.②③D.①②答案 C解析 由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2018届黑龙江海林市朝鲜中学模拟)已知某几何体的三视图如图所示,则该几何体的表面积为(  )A.9+4(+)B.10+2(+)C.11+2(+)D.11+2(+)答案 C解析 根据三视图还原几何体为一个直四棱柱,两底面为四边形(左视图),其余各侧面为矩形,两底面面积为2=5,四个侧面面积为2×2+1×2+2×+2×=6+2+2,几何体的表面积为11+2(+),故选C.4.(2017·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折

3、痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是(  )A.①②④B.①②③C.②③④D.①③④答案 B解析 由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.故选B.5.(2017·沈阳调研)设α,β,γ是三个平面,a,b是两条不同的直线,有下列三个条件:①a∥γ,bβ;②a∥γ,b∥β;

4、③b∥β,aγ.如果命题“α∩β=a,bγ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确的序号填上)答案 ①或③解析 由线面平行的性质定理可知,①正确;当b∥β,aγ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.题型一 求简单几何体的表面积与体积例1 (2016·全国Ⅱ)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥

5、D′ABCFE的体积.(1)证明 由已知得AC⊥BD,AD=CD,又由AE=CF得=,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所以AC⊥HD′.(2)解 由EF∥AC得==.由AB=5,AC=6得DO=BO==4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,BD,HD′平面BHD′,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,AC,OH平面ABC,所以OD′⊥平面ABC.又由=得EF=.五边形ABCF

6、E的面积S=×6×8-××3=.所以五棱锥D′-ABCFE的体积V=××2=.思维升华(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪训练1(2018·乌鲁木齐质检)正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面

7、正三角形中心到一边的距离为××2=,则正棱锥侧面的斜高为=,∴S侧=3××2×=9,∴S表=S侧+S底=9+××(2)2=9+6.(2)设正三棱锥P-ABC的内切球球心为O,连接OP,OA,OB,OC,而O点到三棱锥的四个面的距离都为球的半径r.∴V三棱锥P-ABC=V三棱锥O-PAB+V三棱锥O-PBC+V三棱锥O-PAC+V三棱锥O-ABC=S侧·r+S△ABC·r=S表·r=(3+2)r.又VP-ABC=×××(2)2×1=2,∴(3+2)r=2,得r===-2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。