优先权排队论模型

优先权排队论模型

ID:43488070

大小:494.26 KB

页数:4页

时间:2019-10-08

优先权排队论模型_第1页
优先权排队论模型_第2页
优先权排队论模型_第3页
优先权排队论模型_第4页
资源描述:

《优先权排队论模型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、带优先权的排队论模型在优先权排队模型中,队中的成员被服务的顺序基于他们被赋予的优先级。相比一般的排队模型,很多真实存在的排队系统实际上更符合带优先权的排队论模型,比如紧急工作的招聘优先于其他一般的工作;VIP客户较其他一般客户,在服务上享有优先权等等。因此,带优先权的排队论模型有其实际意义。这里介绍两种最基本的优先权排队模型——非强占性优先权模型和强占性优先权模型。两个模型除优先权行使方式之外,其他假设均一致。我们首先描述这两个模型,之后分别给出其结论,最后通过一个案例来阐述其在实际中的应用。1.模型公共

2、假设:(1)两个模型都存在N个优先级(1级代表最高)(2)服务顺序首先基于优先级,同一优先级内,依据“先到先服务”(3)对任意优先级,顾客到达服从Poisson分布,服务时间服从负指数分布(4)对任意优先级顾客的服务时间相同(5)不同优先级顾客的平均到达率可以不同非强占性优先权(NonpreemptivePriorities)是指,即使一个高优先级的顾客到达,也不能强制让一个正在接受服务的低优先级顾客返回排队。也就是说,一旦服务员开始对一个顾客服务,这项服务就不能被打断直至服务结束。强占性优先权(Pree

3、mptivePriorities)是指,一旦有高优先级的顾客到达,服务员即中断对低优先级顾客的服务(这名顾客重新回到排队中),并马上开始为高优先级顾客服务。结束这项服务后,再按照公共假设中的原则选取下一个被服务的顾客。(这里由于负指数分布的无记忆性,我们不必关注被中断顾客的服务进度,因为剩余服务时间的分布与从起点开始的服务时间的分布总是相同的。)对这两个模型来说,如果忽略顾客的优先级,它们是完全等同于一般的M/M/s排队模型的。因此,当计算整个队列中顾客的总人数(L,??)时,M/M/s模型的结论是适用的

4、;实际上,若随机选择一个顾客,其等待时间(W,??)也可以通过Little公式计算得出。我们改变的只是顾客们等待时间的分布。在优先权排队模型下,等待时间的的方差更大,高优先级的顾客缩短了等待时间,而低优先级的顾客增长了等待时间。为了体现优先权对排队模型的影响,我们需要计算每一个优先级上顾客的平均等待时间(??,k=1,2,……N)和平均队长(??,k=1,2,……N)。2.结论用??表示稳定状态下k优先级的顾客平均等待时间(包括服务时间),则两个模型的结论可以表示如下。非抢占性模型(M/M/s)11Wk

5、,fork=1,2,...,N,ABBkk1s1jsrwhereAss!s,rjj0!B01,ki1i,B1kssnumberofservers,meanservicerateperbusyserver,meanarrivialrateforpriorityi,Ni,i1r,k(这里假设了is,从而使第k个优先级能够达到稳定状态。)i1Little公式对任意优先级仍然适用,所以??——第k个优先级在稳定状态下的平均队长(包括正在接受

6、服务的顾客)可以表示为:LW,fork=1,2,...,Nkkk强占性模型(M/M/1)1Wk,fork=1,2,...,NBBkk1注意到这里的结论适用于仅有一个服务台的情况,但实际上对于s>1的情况,??可以通过简单的迭代得出,该方法在案例中会做介绍。同样,应用Little公式,可得第k个优先级在稳定状态下的平均队长(包括正在接受服务的顾客):LW,fork=1,2,...,Nkkk3.案例——市医院急诊中心的问题管理咨询顾问注意到市医院的急诊病人并没有简单地按照达到顺序接受治疗,实际上

7、病人大致被分为三类:(1)病危型,病情致命,必须马上治疗;(2)严重型,拖延治疗会使病情加重;(3)平稳型,治疗不及时并没有严重的后果。病人们按照以上优先级进行排队,每个优先级内部再按照到达顺序排队。预测显示,大约有10%的病危型病人,30%的严重型病人,60%的平稳型病人。因为严重的疾病在紧急处理后还要进行进一步治疗,所以花在急诊室的时间并不是很长,进而我们可以认为三种类型的病人接受治疗的时间是相同的。由于病危病人和严重型病人的治疗不能耽误,所以这是一个强占性优先权排队模型。数据显示μ=3,λ=2,因此

8、可求得?1=0.2,?2=0.6,?3=1.2。通过对比s=1和s=2时的情况,说明是否有必要在急诊室增加一个医生。用Excel计算的数据如下表所示。(为了对比,同时给出在非抢占性模型下的各项数据。)PreemptivePrioritiesNonpreemptivePrioritiess=1s=2s=1s=2W1-1/μ0.024hour0.238hour0.029hourW2-1/μ0.154hour0.325hour0.0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。