排队论模型及实例

排队论模型及实例

ID:26244766

大小:558.87 KB

页数:48页

时间:2018-11-25

排队论模型及实例_第1页
排队论模型及实例_第2页
排队论模型及实例_第3页
排队论模型及实例_第4页
排队论模型及实例_第5页
资源描述:

《排队论模型及实例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、某维修中心在周末现只安排一名员工为顾客提供服务。新来维修的顾客到达后,若已有顾客正在接受服务,则需要排队等待。若排队的人数过多,势必会造成顾客抱怨,会影响到公司产品的销售;若维修人员多,会增加维修中心的支出,如何调整两者的关系,使得系统达到最优.例10.1排队的例子它是一个典型的排队的例子,关于排队的例子有很多,例如:上下班坐公共汽车,等待公共汽车的排队;顾客到商店购物形成的排队;病人到医院看病形成的排队;售票处购票形成的排队等;另一种排队是物的排队,例如文件等待打印或发送;路口红灯下面的汽车、自行车通过十字路口等等.排队现象是由两个方面构成,一方要求

2、得到服务,另一方设法给予服务。我们把要求得到服务的人或物(设备)统称为顾客,给予服务的服务人员或服务机构统称为服务员或服务台。顾客与服务台就构成一个排队系统,或称为随机服务系统。显然缺少顾客或服务台任何一方都不会形成排队系统.对于任何一个排队服务系统,每一名顾客通过排队服务系统总要经过如下过程:顾客到达、排队等待、接受服务和离去,其过程如下图所示:顾客总体队伍输出输入服务台服务系统输入过程顾客源总体:顾客的来源可能是有限的,也可能是无限的2.排队服务系统的基本概念到达的类型:顾客是单个到达,或是成批到达相继顾客到达的间隔时间:通常假定是相互独立、同分布

3、的,有的是等距间隔时间,有的是服从Poisson分布,有的是服从k阶Erlang分布输入过程是描述顾客来源及顾客是按怎样的规律抵达排队系统排队规则损失制排队系统:顾客到达时,若有服务台均被占,服务机构又不允许顾客等待,此时该顾客就自动辞去2.排队服务系统的基本概念等待制排队系统:顾客到达时.若所有服务台均被占,他们就排队等待服务。在等待制系统中,服务顺序又分为:先到先服务,即顾客按到达的先后顺序接受服务;后到先服务.混合制排队系统:损失制与等待制的混合,分为队长(容量)有限的混合制系统,等待时间有限的混合制系统,以及逗留时间有限制的混合系统.排队规则是

4、指服务允许不允许排队,顾客是否愿意排队服务机构服务台的数目:在多个服务台的情形下,是串联或是并联;2.排队服务系统的基本概念顾客所需的服务时间服从什么样的概率分布,每个顾客所需的服务时间是否相互独立,是成批服务或是单个服务等。常见顾客的服务时间分布有:定长分布、负指数分布、超指数分布、k阶Erlang分布、几何分布、一般分布等.3.符号表示排队论模型的记号是20世纪50年代初由D.G.Kendall(肯达尔)引入的,通常由3~5个英文字母组成,其形式为其中A表示输入过程,B表示服务时间,C表示服务台数目,n表示系统空间数。例如:M/M/S/∞表示输入过

5、程是Poisson流,服务时间服从负指数分布,系统有S个服务台平行服务,系统容量为无穷的等待制排队系统.(2)M/G/1/∞表示输入过程是Poisson流,顾客所需的服务时间为独立、服从一般概率分布,系统中只有一个服务台,容量为无穷的等待制系统.GI/M/1/∞表示输入过程为顾客独立到达且相继到达的间隔时间服从一船概率分布,服务时间是相互独立、服从负指数分布,系统中只有一个服务台,容量为无穷的等待制系统3.符号表示(4)Ek/G/1/K表示相继到达的间隔时间独立、服从k阶Erlang分布,服务时间为独立、服从一般概率分布,系统中只有一个服务台,容量为K

6、的混合制系统.(5)D/M/S/K表示相继到达的间隔时间独立、服从定长分布、服务时间相互独立、服从负指数分布,系统中有S个服务台平行服务,容量为K的混合制系统.4.描述排队系统的主要数量指标队长与等待队长队长(通常记为LS)是指在系统中的顾客的平均数(包括正在接受服务的顾客),而等待队长(通常记为Lq)是指系统中排队等待的顾客的平均数,它们是顾客和服务机构双方都十分关心的数量指标。显然队长等于等待队长加上正在被服务的顾客数.顾客的平均等待时间与平均逗留时间顾客的平均等待时间(通常记为Wq)是指从顾客进入系统的时刻起直到开始接受服务止的平均时间。平均逗留

7、时间(通常记为Ws)是指顾客在系统中的平均等待时间与平均服务时间之和。平均等待时间与平均服务时间是顾客最关心的数量指标.4.描述排队系统的主要数量指标系统的忙期与闲期从顾客到达空闲的系统,服务立即开始,直到系统再次变为空闲,这段时间是系统连续繁忙的时间,我们称为系统的忙期,它反映了系统中服务机构的工作强度,是衡量服务机构利用效率的指标,即与忙期对应的是系统的闲期,即系统连续保持空闲的时间长度.服务机构工作强度用于服务顾客的时间服务设施总的服务时间用于服务顾客的时间服务设施总的服务时间5.Little(利特尔)公式用λ表示单位时间内顾客到达的平均数,μ表

8、示单位时间内被服务完毕离去的平均顾客数,因此1/λ表示相邻两顾客到达的平均时间,1/μ表示对每

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。