欢迎来到天天文库
浏览记录
ID:43465947
大小:584.51 KB
页数:6页
时间:2019-10-03
《韦达定理推广的证明》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、证明:当Δ=b^2-4ac≥0时,方程ax^2+bx+c=0(a≠0)有两个实根,设为x1,x2.由求根公式x=(-b±√Δ)/2a,不妨取x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a,则:x1+x2=(-b-√Δ)/2a+(-b+√Δ)/2a=-2b/2a=-b/a,x1*x2=[(-b-√Δ)/2a][(-b+√Δ)/2a]=[(-b)^2-Δ]/4a^2=4ac/4a^2=c/a.综上,x1+x2=-b/a,x1*x2=c/a.烽火TA000DA 2014-11-04 若b^2-4ac=0则方程有两个相等
2、的实数根 若b^2-4ac<0则方程没有实数解韦达定理的推广 韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元n次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘
3、积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 (3)以x1,x2为根的一元二次方程(二次项系数为1)是 x2-(x1+x2)x+x1x2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax^2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根
4、是X1,x2,那么ax2+bx+c=a(x-x1)(x-x2). 另外这与射影定理是初中必须射影定理图掌握的.韦达定理推广的证明 设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) … A0==(-1)^n*An*ΠXi
5、 所以:∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。有关韦达定理的经典例题 例1已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, 即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1
6、)=199. 注意到x1-1、x2-1均为整数, 解得x1=2,x2=200;x1=-198,x2=0. 例2已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)(x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3求实数k,使得方程kx2+(k+1)x+
7、(k-1)=0的根都是整数. 解:若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2, (x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (’97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ,
8、 =-(αβ-α-β+1)+1=-(α-1)(β-1)+1>1(因α>1>β).映射定理正玄定理与余弦定理
此文档下载收益归作者所有