欢迎来到天天文库
浏览记录
ID:43439877
大小:1.18 MB
页数:20页
时间:2019-10-02
《河北省石家庄市2019届高三数学毕业班模拟考试试题(一)(A卷)理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省石家庄市2019届高三数学毕业班模拟考试试题(一)(A卷)理(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A.B.C.D.【答案】C【解析】【分析】由题意可得:,结合交集的定义确定即可.【详解】由题意可得:,结合交集的定义可知:.本题选择C选项.【点睛】本题主要考查集合的表示方法,交集的定义等知识,意在考查学生的转化能力和计算求解能力.2.若复数(为虚数单位),则()A.B.C.D.【答案】D【解析】【分析】易知,结合复数模的运算法则求解其值即可.【详解】由题意可得:.本题选择D选项.【点睛】本题
2、主要考查复数的运算法则及其应用,属于中等题.3.已知,则()A.B.C.D.【答案】A【解析】【分析】由题意结合诱导公式可得:,结合两角和的正切公式可得的值.【详解】由题意结合诱导公式可得:,据此有:.本题选择A选项.【点睛】本题主要考查诱导公式的应用,两角和的正切公式等知识,意在考查学生的转化能力和计算求解能力.4.下列说法中正确的是()A.若数列为常数列,则既是等差数列也是等比数列;B.若函数为奇函数,则;C.在中,是的充要条件;D.若两个变量的相关系数为,则越大,与之间的相关性越强.【答案】C【解析】【分析】对于选项A,B给出反例可说明命题错误,C由正弦定理可知命题正确,D由相关系数的
3、定义确定其真伪即可.【详解】逐一考查所给的说法:A.若,则数列为常数列,则是等差数列但不是等比数列,该说法错误;B.函数为奇函数,但是不满足,该说法错误;C.由正弦定理可得在中,是的充要条件,该说法正确;D.两个随机变量相关性越强,则相关系数r的绝对值越接近于1,题中说法错误.本题选择C选项.【点睛】本题主要考查奇函数的性质,正弦定理的应用,相关系数的含义,常数列与等差数列、等比数列的关系等知识,意在考查学生的转化能力和计算求解能力.5.已知平面向量与的夹角为,且,则()A.B.C.D.【答案】B【解析】【分析】将两边平方,利用向量模的性质和运算法则计算的值即可.【详解】由题意可得:,则:,
4、据此可得:.本题选择B选项.【点睛】本题主要考查向量的运算法则,向量的模的计算等知识,意在考查学生的转化能力和计算求解能力.6.袋子中装有大小、形状完全相同的个白球和个红球,现从中不放回地摸取两个球,已知第二次摸到的红球,则第一次摸到红球的概率为()A.B.C.D.【答案】B【解析】【分析】由题意,分别列出第二次摸到的红球的所有可能结果和第一次摸到红球的事件,利用古典概型计算公式确定去概率值即可.【详解】设两个红球为,两个白球为,则第二次摸到的红球的所有可能结果为:共6种,其中第一次摸到红球的事件包括:共2种,结合排列组合公式可知第一次摸到红球的概率为.【点睛】本题主要考查古典概型计算公式及
5、其应用等知识,意在考查学生的转化能力和计算求解能力.7.设变量满足约束条件,则目标函数的最小值为()A.B.C.D.【答案】C【解析】【分析】首先绘制出可行域,然后结合目标函数的几何意义确定目标函数取得最小值的点的坐标,据此确定目标函数的最小值即可.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最小值时,其几何意义表示直线系在y轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点B处取得最小值,联立直线方程:,可得点的坐标为:,据此可知目标函数最小值为:.本题选择C选项.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距
6、最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8.已知是定义在上的奇函数,且满足,当时,,则在上,的解集是()A.B.C.D.【答案】C【解析】【分析】首先结合函数的对称性和函数的奇偶性绘制函数图像,原问题等价于求解函数位于直线下方点的横坐标,数形结合确定不等式的解集即可.【详解】函数满足,则函数关于直线对称,结合函数为奇函数绘制函数的图像如图所示:的解集即函数位于直线下方点的横坐标,当时,由可得,结合可得函数与函数交点的横坐标为,据此可得:的解集是.本题选择C选项【点睛】本题主要考查函数奇偶性,函数的对称
7、性等知识,意在考查学生的转化能力和计算求解能力.9.已知椭圆,点为左焦点,点为下顶点,平行于的直线交椭圆于两点,且的中点为,则椭圆的离心率为()A.B.C.D.【答案】B【解析】【分析】由题意,利用点差法求得直线AB的斜率,然后利用斜率公式求解直线AB的斜率,两斜率相等可得关于a,c的齐次方程,据此即可确定椭圆的离心率.【详解】设,直线AB的斜率为,点在椭圆上,则:,两式作差可得:,由于:,故:,.由于,故,
此文档下载收益归作者所有