【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版

【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版

ID:43405010

大小:275.00 KB

页数:10页

时间:2019-10-01

【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 _第1页
【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 _第2页
【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 _第3页
【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 _第4页
【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 _第5页
资源描述:

《【步步高】届高三数学大一轮复习 直线与直线的位置关系学案 理 新人教A版 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学案48 直线与直线的位置关系导学目标:1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.自主梳理1.两直线的位置关系平面上两条直线的位置关系包括平行、相交、重合三种情况.(1)两直线平行对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔________________________.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A2B2C2≠0),l1∥l2⇔______________________

2、__.(2)两直线垂直对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=____.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=____.2.两条直线的交点两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如果两直线相交,则交点的坐标一定是这两个方程组成的方程组的____;反之,如果这个方程组只有一个公共解,那么以这个解为坐标的点必是l1和l2的________,因此,l1、l2是否有交点,就看l1、l2构成的方程组是否有________.3.有关距离(1)两

3、点间的距离平面上两点P1(x1,y1),P2(x2,y2)间的距离

4、P1P2

5、=__________________________________.(2)点到直线的距离平面上一点P(x0,y0)到一条直线l:Ax+By+C=0的距离d=________________________.(3)两平行线间的距离已知l1、l2是平行线,求l1、l2间距离的方法:①求一条直线上一点到另一条直线的距离;②设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2之间的距离d=________________.自我检测1.(2011·济宁模拟)若点P(a,3)到直线

6、4x-3y+1=0的距离为4,且点P在不等式2x+y-3<0表示的平面区域内,则实数a的值为(  )A.7B.-7C.3D.-32.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点(  )A.(0,4)B.(0,2)C.(-2,4)D.(4,-2)3.已知直线l1:ax+by+c=0,直线l2:mx+ny+p=0,则=-1是直线l1⊥l2的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2009·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是

7、(  )A.1或3B.1或5C.3或5D.1或25.已知2x+y+5=0,则的最小值是________.探究点一 两直线的平行与垂直例1 已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0.求满足以下条件的a、b的值:(1)l1⊥l2且l1过点(-3,-1);(2)l1∥l2,且原点到这两条直线的距离相等.变式迁移1 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.探究点二 直线的交点坐标例2 已知直线l1:4x+7y-4=0,l2:mx+y=0,l3:2x+3

8、my-4=0.当m为何值时,三条直线不能构成三角形.变式迁移2 △ABC的两条高所在直线的方程分别为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.探究点三 距离问题例3 (2011·厦门模拟)已知三条直线:l1:2x-y+a=0(a>0);l2:-4x+2y+1=0;l3:x+y-1=0.且l1与l2的距离是.(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:①点P在第一象限;②点P到l1的距离是点P到l2的距离的;③点P到l1的距离与点P到l3的距离之比是∶.若能,求点P的坐标;若不能,说明理由.变式迁移3 已知直线

9、l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.转化与化归思想的应用例 (12分)已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(-1,-2)对称的直线l′的方程.【答题模板】解 (1)设A′(x,y),再由已知∴A′.[4分](2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设对称点M′(a,b),则得M′.[6分]设

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。