资源描述:
《2020版新设计一轮复习数学(文)江苏专版课时跟踪检测(五十四) 古典概型 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(五十四)古典概型一抓基础,多练小题做到眼疾手快1.从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是________.解析:由列举法得,基本事件共10个,满足条件的事件共6个,所以概率为=.答案:2.(2018·苏锡常镇一模)从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的概率为________.解析:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n=6,这两个数的和为3的倍数包含的基本事件有(1,2),(2,4),共2个,所以这两个数的和为3的倍数的概率P==.答案:3.(2019·盐城
2、模拟)从1,2,3,4,5,6这六个数中一次随机地取出2个数,则所取2个数的和能被3整除的概率为________.解析:从1,2,3,4,5,6这六个数中一次随机地取出2个数,基本事件总数n=15,所取2个数的和能被3整除包含的基本事件有(1,2),(1,5),(2,4),(3,6),(4,5),共5个,所以所取2个数的和能被3整除的概率P==.答案:4.(2018·苏北四市一模)现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是________.解析:把这三张卡片排序有“中国梦”,“中梦国
3、”,“国中梦”,“国梦中”,“梦中国”,“梦国中”,共有6种,能组成“中国梦”的只有1种,故所求概率为.答案:5.投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n-mi)为实数的概率为________.解析:因为(m+ni)(n-mi)=2mn+(n2-m2)i,所以要使其为实数,须n2=m2,即m=n.由已知得,事件的总数为36,m=n,有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6个,所以所求的概率P==.答案:6.(2018·苏州期末)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,
4、5,6),则事件“两次向上的数字之和等于7”发生的概率为________.解析:设基本事件为(a,b),其中a,b∈{1,2,3,4,5,6},共有6×6=36个.满足a+b=7的解有6组:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),所以P==.答案:二保高考,全练题型做到高考达标1.(2018·南通调研)100张卡片上分别写有1,2,3,…,100.从中任取1张,则这张卡片上的数是6的倍数的概率为________.解析:从100张分别写有1,2,3,…,100的卡片中任取1张,基本事件总数n=100,所取这张卡片上
5、的数是6的倍数包含的基本事件有1×6,2×6,…,16×6,共16个,所以所取卡片上的数是6的倍数的概率为=.答案:2.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.解析:如图,在正六边形ABCDEF的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种情况,故构成的四边形是梯形的概率P==.答案:3.(2019·张家港模拟)若先后抛掷两次骰子得到的点数分别为m,n,点P(m,n)落在区域
6、x-2
7、+
8、y-2
9、≤2内的概率为
10、________.解析:由题意可得,基本事件n=36.当m=1时,1≤n≤3,故符合条件的基本事件有3个;当m=2时,1≤n≤4,故符合条件的基本事件有4个;当m=3时,1≤n≤3,故符合条件的基本事件有3个;当m=4时,n=2,故符合条件的基本事件有1个.故符合条件的基本事件共11个,所以所求概率为.答案:4.(2018·南京一模)甲盒子中有编号分别为1,2的2个乒乓球,乙盒子中有编号分别为3,4,5,6的4个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为________.解析:由题意得,从甲、乙两个盒
11、子中随机地各取出1个乒乓球,共有2×4=8种情况,编号之和大于6的有(1,6),(2,5),(2,6),共3种,所以取出的乒乓球的编号之和大于6的概率为.答案:5.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b<c时,称该三位自然数为“凹数”(如213,312等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“凹数”的概率是________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位
12、自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有4×6=24个.当b=1时,有214,213,312,314,412,41