欢迎来到天天文库
浏览记录
ID:43194524
大小:302.04 KB
页数:16页
时间:2019-09-28
《【高考必备】2017高考数学考试大纲解读系类微刊【上册】理科:专题5平面解析几何.》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专题五平面解析几何I考纲原文呈现I1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何耍素.(2)理解直线的倾斜角和斜率的概念,学握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条点线平行或垂直.(4)掌握确定直线位置的儿何要索,掌握直线方程的儿种形式(点斜式、两点式及-•般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的儿何要索,掌握圆的标准方程与一般方程.(2)能根据给
2、定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理儿何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角处标表示点的位置.(2)会推导空间两点间的距离公式.4.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题屮的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、儿何图形和标准方程,知道它的简单儿何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结介的思想.
3、5.曲线与方程了解方程的Illi线与Illi线的方程的对应关系.I考情分析与预测I年份考查角度分值度2016年I卷选择题第5题双曲线的方程5容易选择题第10题抛物线的定义及几何性质5中等解答题第20题椭圆的定义及方程、直线与圆和圆锥Illi线的关系12中等2016年II卷选择题笫4题点到直线的距离公式5容易选择题第11题双曲线的几何性质—D中等解答题第20题椭圆的儿何性质、直线与椭圆的位置关系12中2016年III卷选择题第11题椭圆的儿何性质、直线与椭圆的位置关系5中等填空题笫16题血线与圆的位置关系一5W难解答题笫20题抛物线的定义及儿何性质
4、、直线与抛物线的位置关系12中等2015年I卷选择题第5题双曲线的几何性质—D容易填空题笫14题椭圆及圆的方程5容易解答题第20题直线的方程、直线与抛物线的位进关系12中等2015年II卷选择题第7题圆的方程—D中等选择题第11双曲线的儿何性质L5中题等解答题笫20题椭圆的几何性质、直线打椭圆的位置关系12中等2014年I卷选择题笫4题双曲线的几何性质L5容易选择题第10题抛物线的定义及几何性质—5中等解答题笫20题椭圆的几何性质、肓线与椭圆的位置关系12中等2014年II卷选择题第10题抛物线的几何性质—5容易填空题笫16题直线与圆的位置关系—
5、DW难解答题第20题椭圆的几何性质、肓线与椭圆的位置关系12中等2013年I卷选择题第4题双曲线的几何性质—5容易选择题第10题椭圆的儿何性质、直线与椭圆的位置关系一5中等解答题第20题轨迹方程、圆的方程、直线与椭圆的位置关系12中等2013年II卷选择题笫12题直线的方程一5困难解答题第20题椭圆的几何性质、宜线与椭圆的位置关系、12中等2012年I卷选择题第4题椭圆的儿何性质L0容易选择题笫8题双曲线及抛物线的几何性质L5中等解答题第20题抛物线的定义与标准方程、圆的方程、点到庖线的距离12'I考向1圆与方程样题1:己知圆O:x2+y2=9及
6、点C⑵1).若线段OC的垂直平分线交圆O丁A,B两点,试判断四边形OACB的形状,并给与证明;等2012年II卷选择题第4题椭圆的儿何性质5容易选择题第8题抛物线的几何性质、直线与双曲线的位置关系5中等解答题第20题抛物线的定义与标准方程、直线与抛物线的位置关系12中等命题预测本部分是高考热点内容,难度中等偏上,一般为两小一大,预计2017年主要会考查:(1)两条直线的平行与垂直,点到直线的距离,两点间距离是命题的热点,对于距离问题多融入到解答题中进行考查;(2)求関的方程着重考查利川待定系数法,直线与I员啲位置关系,特别是相切要特别关注;(3)
7、圆锥曲线的定义、标准方程和几何性质是考查的热点,直线为椭圆(抛物线)的位置关系是高考的重点,通常结合函数、方程、不等式、平面向量等知识,考查弦氏问题,面积问题,轨迹方程问题,探求有关曲线的性质,求参数的范围,求最值与定值,探求存在性等问题,样题分析1:本题主要考肓•线与圆的位置有•关系、点壬两条血线的位置关系、基本彳以及考杳逻辑思维能力、运算类讨论的思想、方程的思想.的位登关系综合题,通常'结合用点到肓线的距离公式可解初与圆的位置关系时,利用圆心d与圆半径比较人小即可;当样题深度解读4jP_4十+19此时'由解得—或i值,从而求得直线的方程.【解
8、析】(I)四边形O4C3为菱形.证明如卜I(1、0C的中点为1,—,设川和必),S(x2,y2),<2丿设0C的垂直平分线为^=-2x+
此文档下载收益归作者所有