欢迎来到天天文库
浏览记录
ID:29054992
大小:476.00 KB
页数:11页
时间:2018-12-16
《2018年高考数学考试大纲解读 专题06 平面解析几何 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题06平面解析几何(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根
2、据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆
3、锥曲线的简单应用.对于直线与圆的考查:1.从考查题型来看,涉及本专题的题目一般在选择题、填空题中出现,考查直线的倾斜角与斜率、直线的方程、圆的方程、直线与直线、直线与圆的位置关系等.2.从考查内容来看,主要考查直线与圆的方程,判断直线与圆的位置关系,及直线、圆与其他知识点相结合.3.从考查热点来看,直线与圆的位置关系是高考命题的热点,通过几何图形判断直线与圆的位置关系,利用代数方程的形式进行代数化推理判断,是对直线与圆位置关系的最好的判断,体现了数形结合的思想.对于圆锥曲线的考查:1.从考查题型来看,涉及本专题的选择题、填空题常结合圆锥曲线的定义及
4、其简单几何性质,利用直线与圆锥曲线的位置关系,通过建立代数方程求解.解答题中则常综合考查椭圆的定义、标准方程、直线与椭圆的位置关系等.2.从考查内容来看,主要考查圆锥曲线的方程,以及根据方程及其相应图形考查简单几何性质,重点是椭圆及抛物线的简单几何性质的综合应用,注重运算求解能力的考查.3.从考查热点来看,直线与圆锥曲线的位置关系是高考命题的热点,利用直线与圆锥曲线的位置关系,通过直线方程与圆锥曲线方程的联立,结合椭圆、双曲线、抛物线的定义考查与之有关的问题,重点突出考查运算的能力,体现了数形结合的思想.考向一圆与方程样题1(2016新课标II文)
5、圆的圆心到直线的距离为1,则a=A.B.C.D.2【答案】A样题2(2017新课标III文)在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【解析】(1)不能出现AC⊥BC的情况,理由如下:设,,则满足,所以.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现AC⊥BC的情况.(2)BC的中点坐标为(),可得BC的中垂线方程为.由(1)可得,所以AB的中垂线方程为.联立又,可得所以过A、B、C三
6、点的圆的圆心坐标为(),半径故圆在y轴上截得的弦长为,即过A、B、C三点的圆在y轴上截得的弦长为定值.【名师点睛】直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:;(2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.考向二圆锥曲线的简单几何性质样题3(2017新课标全国III文)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A.B.C.D.【答案】A【解析】以线段
7、为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.样题4(2017新课标全国I文)设A,B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是A.B.C.D.【答案】A样题5(2017新课标全国I文科)已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则的面积为A.B.C.D.【答案】D样题6(2017天津文科)已知双曲线的右焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线
8、的方程为A.B.C.D.【答案】D【解析】由题意可得,解得,故双曲线方程为.故选D.【名师点睛】本题主要考查双曲线的标准方
此文档下载收益归作者所有