勾股定理竞赛培训题(含问题详解)

勾股定理竞赛培训题(含问题详解)

ID:43103353

大小:206.00 KB

页数:14页

时间:2019-09-26

勾股定理竞赛培训题(含问题详解)_第1页
勾股定理竞赛培训题(含问题详解)_第2页
勾股定理竞赛培训题(含问题详解)_第3页
勾股定理竞赛培训题(含问题详解)_第4页
勾股定理竞赛培训题(含问题详解)_第5页
资源描述:

《勾股定理竞赛培训题(含问题详解)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文档勾股定理竞赛培训题1、如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.(1)①依题意补全图2;②求证:AD=BE,且AD⊥BE;③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;(2)如图3,正方形ABCD边长为,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.文案大全实用标准文档2、(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DC

2、E旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.文案大全实用标准文档3、如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1

3、)试说明△ABC是等腰三角形;(2)已知S△ABC=10cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.文案大全实用标准文档4、已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直

4、线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长. 文案大全实用标准文档5、如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连结AF,BF.(1)求AE和BE的长.(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB,AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α

5、(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P,Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.参考答案1、【分析】(1)①根据旋转的特性画出图象;②由∠ACD、∠BCE均与∠DCB互余可得出∠ACD=∠BCE,由△ABC和△CDE都是等腰直角三角形可得出AC=BC、DC=EC,结合全等三角形的判定定理SAS即可得出△ADC≌△BEC,从而得出AD=BE,再由∠BCE=∠ADC=135°

6、,∠CED=45°即可得出∠AEB=90°,即证出AD⊥BE;③依照题意画出图形,根据组合图形的面积为两个三角形的面积和可用AE,BE去表示CM;(2)根据题意画出图形,比照(1)③的结论,套入数据即可得出结论.【解答】解:(1)①依照题意补全图2,如下图(一)所示.文案大全实用标准文档②证明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,∴∠ACD=∠BCE.∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,DC=EC.在△ADC和△BEC中,有,∴△ADC≌△BEC(SAS),∴

7、AD=BE,∠BEC=∠ADC.∵点A,D,E在同一直线上,△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∴AD⊥BE.③依照题意画出图形,如图(二)所示.∵S△ABC+S△EBC=S△CAE+S△EAB,即AC•BC+BE•CM=AE(CM+BE),∴AC2﹣AE•BE=CM(AE﹣BE).∵△CDE为等腰直角三角形,∴DE=2CM,∴AE﹣BE=2CM.(2)依照题意画出图形(三).其中AB=,DP=1,BD

8、=AB=文案大全实用标准文档由勾股定理得:BP==3.结合(1)③的结论可知:AM===1.故点A到BP的距离为1.【点评】本题考查了旋转的性质、全等三角形的判定及性质、三角形的面积公式、角的计算以及勾股定理,解题的关键:(1)①结合题意画出图形;②找出△ADC≌△BEC;③利用分割法求组合图形的面积;(2)利用类比法借助(1)③

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。