欢迎来到天天文库
浏览记录
ID:42884837
大小:49.83 KB
页数:7页
时间:2019-09-22
《正方形的性质和判定 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.2.3正方形教学目标:1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别经历探索正方形有关性质、判定重要条件的过程。3.在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法。4.通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.教学设计课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手做中对正方形产
2、生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.归纳、总结正方形的性质:因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,引导学生从角、边、对角线上
3、归纳总结。正方形性质定理1:正方形的四个角都是直角,四条边都相等。正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。应用举例:例1(教材P58的例5)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵ 四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△AB
4、O≌△BCO≌△CDO≌△DAO.学生思考:根据正方形与矩形、菱形的关系,想一想正方形的判定方法有哪些?学生分组讨论:什么样的菱形是正方形?什么样的矩形是正方形?归纳总结:1.有一个角是直角的菱形是正方形.2.对角线相对菱形是正方形.3.邻边相等的矩形是正方形.4.对角线互相垂直的矩形是正方形.应用举例:例2(补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证
5、AN=DP.即可证出MN=NP.从而得出结论.证明:∵ PN⊥l1,QM⊥l1,∴PN∥QM,∠PNM=90°.∵ PQ∥NM,∴ 四边形PQMN是矩形.∵四边形ABCD是正方形∴ ∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).∴ ∠1+∠2=90°.又 ∠3+∠2=90°,∴ ∠1=∠3.∴△ABM≌△DAN.∴AM=DN.同理AN=DP.∴AM+AN=DN+DP即MN=PN.∴ 四边形PQMN是正方形(有一组邻边相等的矩形是正方形).例3:已知:分别延长等腰直角三角形OAB的两条直角边AO和BO,使AO=OC,BO=OD,求证:四边
6、形ABCD是正方形。随堂练习1.正方形的四条边______,四个角_______,两条对角线________.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;()⑤四个角相等的四边形是正方形.()3.已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.求证:∠AFE=∠AEF.反馈归纳(1)正方形是怎样的平行四边形?,有一组邻边相等,且有一个角是直角的平行四边形;(2)正方形是怎样的矩形?有一组邻边相等的矩形;(3)正
7、方形是怎样的菱形?有一个角是直角的菱形;(4)明确四者之间的关系!!!!(5)判定一个平行四边形是正方形,还应具备什么条件?(6)小结:判定正方形的方法。课后反思:本节课是人教版八年级下册的一节课,整节课紧随新课堂教学理念,将课堂交给学生,让学生始终都在体验、观察、操作、感受、讨论、探究、论证、归纳总结的过程中磨练和成长。让学生从和实际生活紧密结合的情境中进入课堂,感受数学知识和现实生活的紧密联系,带着问题去学习新知,充分激发了学生的好奇心和求知欲。在整个教学设计过程中,学生将经历知识产生、形成的过程,
此文档下载收益归作者所有