平行四边形的性质 第1课时

平行四边形的性质 第1课时

ID:42877249

大小:18.21 KB

页数:5页

时间:2019-09-23

平行四边形的性质 第1课时_第1页
平行四边形的性质 第1课时_第2页
平行四边形的性质 第1课时_第3页
平行四边形的性质 第1课时_第4页
平行四边形的性质 第1课时_第5页
资源描述:

《平行四边形的性质 第1课时》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.1平行四边形 18.1.1平行四边形的性质第1课时马街中学李绍刚一、学情分析学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。学生活动经验基础:本节内容是学生在学习和掌握了平行线、全等三角形和轴对称等知识基础上,进一步来研究平行四边形性质。在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。二、学习任务分析四边形和三角形一样,也是基本的平面图

2、形,在七年级下册有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。教学重点:理解和掌握平行四边形性质。教学难点:平行四边形性质的证明。教学方法:探索归纳法三、教学过程设计(一)创设情境,温

3、故知新1.小组活动一内容:课件展示图片,你从中发现了哪些学过的图形?小学学过的平行四边形是怎样定义的?你能叙述平行四边形的定义吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。2.小组活动二内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位

4、置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD//BC且AB//BC;平行四边形的表示“     ”。(二)合作交流,探索归纳内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?  ⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究

5、平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。活动注意事项:引导学生动手操作、复制、旋转、观察、分析,在剪切平行四边形纸片时,要保证上下纸片的大小、形状完全相同。(三)推理论证、感悟升华1.实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边形的对应边、对应角分别相等。(2)可以通过推理来证明这个结论。例:如图6-2(1),四边形ABCD是平行四边形.   求证:AB=CD,BC=DA.证明:如图6-2(2),连接AC.∵四边形A

6、BCD是平行四边形∴AD//BC,AB//CD∴∠1=∠2,∠3=∠4∴△ABC和△CDA中  ∠2=∠1   AC=CA  ∠3=∠4∴△ABC≌△CDA(ASA)∴AB=DC,AD=CB学生证明:平行四边形的对角相等.2.活动目的:学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。3.活动效果:“实践→认识→再实践→认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。 (四) 应用巩固  深化提高1. 活动内容

7、: (1)练一练:已知:如图6-3,在 ABCD中, E,F是对角线AC上的两点,且AE=CF.          求证:BE=DF.证明:∵四边形ABCD是平行四边形∴ AB=CD   AB//CD ∴ ∠BAE=∠DCF又∵ AE=CF ∴ △BAE≌△DCF ∴ BE=DF ⑵议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?A(学生思考、议论)B总结归纳:可以确定其它三个内角的度数。由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。2.活

8、动目的:通过练一练,议一议,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。3.活动效果:学生经过通过此环节的思、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。