因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案

因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案

ID:42865154

大小:42.50 KB

页数:5页

时间:2019-09-23

因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案_第1页
因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案_第2页
因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案_第3页
因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案_第4页
因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案_第5页
资源描述:

《因式分解法解一元二次方程教案.2.3解一元二次方程因式分解法教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学设计课题解一元二次方程-因式分解法教学目标知识与技能1.会用因式分解法解一元二次方程;2.会用换元法解一元二次方程;过程与方法灵活选用简便的方法解一元二次方程.情感态度与价值观在解方程的过程中,提高学生的解决问题的能力.教学重点用因式分解法解一元二次方程教学难点用因式分解法解一元二次方程教学资源教育网教学过程:一、知识回顾1.分解因式的常用方法有哪些?(1)提取公因式法:am+bm+cm=  m(a+b+c)  (2)公式法:,,  (3)十字相乘法:备注二、新知讲解1.因式分解法把一个多项式分解成  几个整式乘积  的形式叫做分解因式.

2、当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们可以使两个一次式分别等于0,从而实现降次.这种解一元二次方程的方法称为  因式分解法  .2.因式分解法解一元二次方程的步骤:①把方程的右边化为0;②用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;③令每一个因式分别等于0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.3.因式分解法的条件、理论依据因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;理论依据是:如果两个因式的积等于零,那

3、么至少有一个因式等于零.三、典例探究1.用因式分解法解一元二次方程【例1】用因式分解法解方程:(1)2(2x-1)2=(1-2x);(2)4(y+2)2=(y-3)2.总结:用因式分解法解一元二次方程,是利用了“当ab=0时,必有a=0或者b=0”的结论.因式分解法解一元二次方程的步骤:(1)把方程的右边化为0;(2)用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;(3)令每一个因式分别等于0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.用换元法解一元二次方程

4、【例2】(2014•山西校级模拟)解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为x1=2,x2=5.利用这种方法求方程(2x+5)2﹣4(2x+5)+3=0的解.总结:换元法在解特殊一元二次方程的时候用的较多,运用了整体思想.在一元二次方程中,某个代数式几次出现,用一个字母来代替它可以简化问题时,我们可以考虑用换元法来解.解高次方程时,通过换元的方法达到

5、降次的目的.练2(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=_______.练3解方程:(x2-3)2-5(3-x2)+4=0.3.灵活选用方法解一元二次方程【例3】(2014秋•漳县校级期中)选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0;(4)(y+2)2=(3y﹣1)2.五、课后小结总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(

6、1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.(2)若常数项为0,即形如ax2+bx=0的形式,应选用因式分解法.(3)若一次项系数和常数项都不为0,即形如ax2+bx+c=0的形式,看左边的整式是否能够因式分解,如果能,则宜选用因式分解法;不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.(4)公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的.因此在解方程时,我们首先考虑能否应用直接开平方法、因式分解法等简单方法,若不行,则再考虑公式法(适

7、当也可考虑配方法).六、课后作业:见同步练习。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。