欢迎来到天天文库
浏览记录
ID:42856423
大小:658.50 KB
页数:4页
时间:2019-09-23
《勾股定理2.1 勾股定理第2课时教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、17.1勾股定理(二)教学时间第2课时一、知识与技能能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题,树立数形结合的思想.二、过程与方法1.经历将实际问题转化为直角三角形的数学模型过程,并能用勾股定理来解决此问题,发展学生的应用意识.2.在解决实际问题的过程中,体验解决问题的策略,发展学生的实践能力和创新精神.3.在解决实际问题的过程中,学会与人合作,并能与他人交流思维过程和结果,形成反思的意识.三、情感态度与价值观1.在用勾股定理探索实际问题的过程中获得成功的体验,锻炼克
2、服困难的意志,建立自信心.2.在解决实际问题的过程中形成实事求是的态度以及进行质疑和独立思考的习惯.教学重点将实际问题转化为直角三角形模型.教学难点如何用解直角三角形的知识和勾股定理解决实际问题.教学过程一、复习导入1.如果直角三角形的两条直角边长分别为a,b,斜边长为c,请写出勾股定理的表达式:____________________。2.求出图中各直角三角形中未知边的长度.设计意图:勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计
3、算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大.它不仅在数学中,而且在其他自然科学中也被广泛的应用.此环节让学生复习巩固已学知识,为后面勾股定理的实际应用打好基础.二、讲授新课(典例精讲)例1、长13m的梯子靠在墙上,梯子的底部离墙角5m,则梯子的顶端离地面的距离AB=m.设计意图:进一步体会勾股定理在现实生活中的广泛应用,提高解决实际问题的能力.变式随堂练:3.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m.(1)求梯子的底端B距墙角O多少米?(2)如果
4、梯子的顶端A沿墙下滑1m,那么梯子底端B也外移多少米?例2 一个门框的尺寸如图所示,一块长4m,宽3m的长方形薄木板能否从门框内通过?请说明理由.思考:木板横着,竖着是否能通过?木板斜着又是否能通过?ABCD1.5m2.5m变式随堂练:5、小东拿着一根长竹竿进一个宽3米、高4米的长方形城门,他先横着拿不进去,又竖起来拿(假设把城门、竹竿置于同一个平面内),结果竹竿比城门高0.5米,那么小东能把竹竿拿进城门吗?为什么?6、有一根长70cm的木棒要放在长、宽、高分别是50cm、40cm、30cm的木箱
5、中,能放进去吗?请说明理由。设计意图:进一步熟悉如何将实际问题转化为数学模型,并能用勾股定理解决简单的实际问题,发展学生的应用意识和应用能力.三、课时小结1、运用勾股定理解决实际问题的关键是:根据实际情况准确构造出_______三角形,分析问题的数量关系,然后用勾股定理解答。2、运用勾股定理解决实际问题时,要注意:当问题的关系不明了时,考虑_______思想与勾股定理相结合。四、课后练习《学评》第12页到13页第1-8题课后反思:通过本节,让学生利用勾股定理,完成了将实际问题转化为直角三角形的数学
6、模型的全过程.学生思考总结,教师完善,得出结论。本节是从实际问题出发,转化为直角三角形问题,并用勾股定理完成解决.
此文档下载收益归作者所有