二次函数y=ax^2+bx+c 的图象和性质

二次函数y=ax^2+bx+c 的图象和性质

ID:42835527

大小:58.50 KB

页数:4页

时间:2019-09-22

二次函数y=ax^2+bx+c 的图象和性质_第1页
二次函数y=ax^2+bx+c 的图象和性质_第2页
二次函数y=ax^2+bx+c 的图象和性质_第3页
二次函数y=ax^2+bx+c 的图象和性质_第4页
资源描述:

《二次函数y=ax^2+bx+c 的图象和性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的图象和性质教学设计姓名:邹海燕单位:江西省丰城九中一、教学目标(一)知识目标1.使学生会用描点法画出二次函数的图象;2.使学生会用配方法确定抛物线的顶点和对称轴3.使学生进一步理解二次函数与抛物线的有关概念;(二)能力目标1.培养学生分析问题、解决问题的能力;2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握;(三)情感目标1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及

2、常数项之间的内在联系的数学美及和谐的数学美.二、教学方法教师采用比较法、观察法、归纳总结法本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系.三、重点·难点·疑点及解决办法1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上三点的坐标求二次函数的解析式.因为它们是画出二次函数的图像的基础.2.教学难点:配

3、方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有一定的难度.3.教学疑点:顶点式与一般式如何转化4.解决办法:知道一般式到顶点式是通过配方得到的;四、教学媒体三角板投影片五、教学设计思路1.复习回顾导入新课.2.“如何画的图像?”教师提问,让学生去讨论、发现:要写成的形式,找出对称轴,引入由一般式化成顶点式,推导出顶点坐标公式.3.学生练习,为了强化巩固.六、教学步骤(一)明确目标在前几节课的基础上,我们已经能画出形如的图像,并能指出

4、它的对称轴和顶点坐标,对于一般形式的二次函数应如何解决这些问题呢?这就是我们这节课的主要任务之一.(板书)(二)整体感知本节课的第一个重点是用配方法确定抛物线的顶点和对称轴.为了学生能在较复杂的题中顺利应用配方法,教师首先出示了几个较简单的练习由学生完成,并来讨论做题思路.有了基本思路之后,再来观察给出的这几个练习题的共同特征:二次项系数为1.由此引出:若二次项的系数不为1怎么办?学生较易想到要使它变为1,跟着就提出:怎样能使二次项的系数变为1呢?用提公因式法.而一旦二次项的系数变为1之后,就可

5、以按照上面的思路来解决了,这样这个重点和难点也就得到了自然地突破.本节课的第二个重点是用待定系数法由已知图象上三个点的坐标求二次函数的解析式.由于待定系数法已在前面交待过,所以教师可以完全放手由学生自主完成,这样更能体现课堂教学中以学生为主体,教师为主导的精神.(三)教学过程复习回顾:一般地,抛物线y=a(x-h)2+k与y=ax2的相同,不同抛物线y=a(x-h)2+k有如下特点:1.当a﹥0时,开口,当a﹤0时,开口,2.对称轴是3.顶点坐标是通过这些练习题,使学生对以前的知识加以复习巩固,

6、以便这节课的应用.这几个问题可找层次较低的学生回答,由其他同学给予评价.我们已画过二次函数的图像,画它的图象的第一步是干什么?(列表)列表时我们是怎样取值的呢?(先确定中心值)若我们要画二次函数的图象应怎么办呢?下面,我们就一起来看一个具体的问题:(出示幻灯)探究一:画函数的图像,学生讨论得到:把二次函数转化成的形式再加以研究.总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方.提问:当二次项的系数不为1时,应怎么办呢?答:利用提公因式法,首先把二次项的系数化成1,再用上述方法.画函

7、数的图像,并指出它的开口方向、对称轴和顶点坐标.分析:首先要用配方法将函数写成的形式;然后,确定函数图像的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描点、连线.学生演板这里的关键步骤是用配方法把函数改写成的形式,应按怎样的方式来做呢?(教师边提问、边讲解、边板书)首先,把等号右边的(即二次项的系数)提出来,使二次项的系数为1,得;然后,把括号内的部分配成一个完全平方(即先加,再减一次项系数的一半的平方),得;最后去掉中括号,得.这就与的形式一样,就可以由学生独立完成余下的部分了.

8、注意:描点画图时,要参照已知抛物线的特点,一般先找出顶点,并且用虚线画出对称轴,然后再对称描点,最后,用平滑曲线顺次连结各点.画完图之后,可让学生观察图像,思考:提问:1.这条抛物线与哪条形如的抛物线形状相同?为什么?答:与抛物线的形状相同,因为若两条抛物线形状相同,则。的值就相同.2.它是抛物线经过怎样的移动得到的?这个问题可根据学生的层次决定问还是不问,关于这个问题的回答可以像书上一样,即:将抛物线平行移动,顶点从原点移动到(6,3)而成的,也可以按照沿轴移动的方式来回答.上面,我们研究了如

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。