28.1.3特殊锐角三角函数值及其应用 作业设计

28.1.3特殊锐角三角函数值及其应用 作业设计

ID:42815190

大小:374.50 KB

页数:6页

时间:2019-09-22

28.1.3特殊锐角三角函数值及其应用 作业设计_第1页
28.1.3特殊锐角三角函数值及其应用 作业设计_第2页
28.1.3特殊锐角三角函数值及其应用 作业设计_第3页
28.1.3特殊锐角三角函数值及其应用 作业设计_第4页
28.1.3特殊锐角三角函数值及其应用 作业设计_第5页
资源描述:

《28.1.3特殊锐角三角函数值及其应用 作业设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、28.1.3作业设计分层作业:1.基础篇.要求完成课本练习28.1复习巩固第3题。2中等篇。3.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业.学生可以自己根据具体情况划分课内、课外作业的份量).一、选择题.1.已知:Rt△ABC中,∠C=90°,cosA=,AB=15,则AC的长是().A.3B.6C.9D.122.下列各式中不正确的是().A.sin260°+cos260°=1B.sin30°+cos30°=1C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos6

2、0°+tan45°的结果是().A.2B.C.D.14.已知∠A为锐角,且cosA≤,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana6的值为().A.B.C.D.7.当锐角a>60°时,cosa的值().A.小于B.大于C.大于D.大于18.在△ABC中,三边之

3、比为a:b:c=1::2,则sinA+tanA等于().A.9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则∠CAB等于()A.30°B.60°C.45°D.以上都不对10.sin272°+sin218°的值是().A.1B.0C.D.11.若(tanA-3)2+│2cosB-│=0,则△ABC().A.是直角三角形B.是等边三角形C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形二、填空题.12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.13.的值是_______.14.已知,等腰△A

4、BC的腰长为4,底为30°,则底边上的高为______,周长为______.15.在Rt△ABC中,∠C=90°,已知tanB=,则cosA=________.16.正方形ABCD边长为1,如果将线段BD绕点B旋转后,点D落在BC的延长线上的点D′处,那么tan∠BAD′=________.617.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,得的值为_______.三、解答题.18.求下列各式的值.(1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45°(3);(4)-sin60°(1-s

5、in30°).(5)tan45°·sin60°-4sin30°·cos45°+·tan30°(6)+cos45°·cos30°19.在△ABC中,AD是BC边上的高,∠B=30°,∠C=45°,BD=10,求AC.20.如图,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C为CQ上,且∠OBC=30°,分别求点A,D到OP的距离.21.已知sinA,sinB是方程4x2-2mx+m-1=0的两个实根,且∠A,∠B是直角三角形的两个锐角,求:(1)m的值;(2)∠A与∠B的度数.622.如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米

6、,BC=0.5米,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度=60°,问此时车厢的最高点A距离地面是多少米?(精确到0.1m)23.如图,由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,这就需要在A、B、C之间铺设地下输水管道.有人设计了三种铺设方案:如图(1)、(2)、(3),图中实线表示管道铺设线路,在图(2)中,AD⊥BC于D;在图(3)中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.已知△ABC恰好是一个边长是a的等边三角形,请你通过计算,判断哪个铺设方案最好.第3课时作业设计(答案)一、1.C2

7、.B3.D4.B5.B6.A7.A8.A9.B10.A11.A二、12.90°13.14.2,12+815.16.17.三、18.(1)(5);(6)019.∵AD是BC边上的高,∴△ABD和△ACD都是直角三角形.∵=tan30°,BD=10,∴AD=.∴=sinC,6∴AC=.20.过点A、D分别作AE⊥OP,DF⊥OP,DG⊥OQ,垂足分别为E、F、G.在正方形ABCD中,∠ABC=∠BCD=90°.∵∠OBC=30°,∴∠ABE=60°.在Rt△AEB中,AE=AB·sin60°=2×=(cm).∵四边形DFOG是矩形,∴DF=GO.∵∠OBC=

8、30°,∴∠BCO=60°,∴∠DCG=30°.在Rt△DCG中,CG=CD·c

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。