高一数学知识点幂函数

高一数学知识点幂函数

ID:42805176

大小:34.50 KB

页数:7页

时间:2019-09-23

高一数学知识点幂函数_第1页
高一数学知识点幂函数_第2页
高一数学知识点幂函数_第3页
高一数学知识点幂函数_第4页
高一数学知识点幂函数_第5页
资源描述:

《高一数学知识点幂函数》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高一数学知识点:幂函数  掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是精品学习网高中频道为大家整理的幂函数公式大全,希望对广大朋友有所帮助。  定义:  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。  定义域和值域:  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当

2、x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域  性质:  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能

3、是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数;  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义

4、域为不等于0的所有实数。  在x大于0时,函数的值域总是大于0的实数。  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。  而只有a为正数,0才进入函数的值域。  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.  可以看到:  (1)所有的图形都通过(1,1)这点。  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。  (4)当a小于0时,a越小,图形倾斜程度越大。  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 

5、 (6)显然幂函数无界。高一数学知识点:指数函数、函数奇偶性  指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得  如图所示为a的不同大小影响函数图形的情况。  可以看到:  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。  (2)指数函数的值域为大于0的实数集合。  (3)函数图形都是下凹的。  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中

6、(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。  (7)函数总是通过(0,1)这点。(8)显然指数函数无界。奇偶性  注图:(1)为奇函数(2)为偶函数  1.定义  一般地,对于函数f(x)  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做

7、偶函数。  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。  说明:①奇、偶性是函数的整体性质,对整个定义域而言  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。