资源描述:
《小升初数学十大考点-第四讲几何综合》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第四讲几何综合内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的儿何计算问题.各种具有相当难度的儿何综合题.典型问题1.如图30-2,己知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影D图30-2三角形BFD的而积为多少平方厘米?【分析与解】方法一:因为CEFG的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG的边长为x,有:S正方形=1I0=100,S正方形cefg=X111x2s近F
2、石DGxGF石(10・x)x=—,10x+x2_厂又Smbd=*X10x10=50,S、bef=*(1o+x)x二阴影部分的面积为:S'BEFS正方形ABCD+S正方形CEFG+—=100+x2+*°A~~A'-50-1"=50(平方厘米).22方法二:连接FC,有FC平行与DB,则四边形BCFD为梯形.DJL有△DFB、ADBC共底DB,等高,所以这两个三角形的面积相等,显然,ADBC的面积討0W0(平方厘米).阴影部分ADFR的面积为50平方厘米.2•如图30-4,ZA+ZB+ZC+ZD+ZE+ZF+ZG+Z
3、H+ZT等于多少度?图30-4【分析与解】为了方便所述,如下图所示,标上数字,有ZI=18O°-(Z1+Z2),而二180°-Z3,Z2=180°-Z4,有ZI二Z3+Z4-180°同理,ZH=Z4+Z5-180°,ZG=Z5+Z6-180°,ZF=Z6+Z7-180°,ZE=Z7+Z8-180°,ZD二Z8+Z9-180:ZC=Z9+Z10-180°,ZB=Z10+Zl1-180°,ZA=Z11+Z3-18O0则ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH+ZI=2X(Z3+Z4+Z5+Z6+Z7+Z8+Z9
4、+Z10+Zll)-9X180n而Z3+Z4+Z5+Z6+Z7+Z8+Z9+Z10+Z11正是9边形的内角和为(9-2)X180°二1260°.所以ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH+Z1=2X1260-9X180=900°3.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同旦最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,
5、具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设aFl6、26125图30-6【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:为特征的有7组:1
7、27.262.55第1种情况1
8、214.62.66第2种情况第珊情况1
9、2:2:2.57.25第4种情况为特征的有6组:第10种情况
10、
11、2L2f4.62.6第7种
12、情况第9种情况第三类情况有如下三组:第14种情况29•124.52.614節硏情况!
13、212514.6第11种情况第12种情况oq66第13种情况共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,
14、2.5,4.5),(1,2,5,6,12).,10_2025、999丿(1,2,2.4,4.8,5),'13102514<781310^C,3,3,T,B>3.如图30-8,ABCD是平行四边形,面积为72平方厘米,E,F分别为边AB,BC的中点.则图形中阴影部分的面积为多少平方厘米?图30-8【分析与解】如下图所示,连接EC,并在某些点处标上字母,因为AE平行于DC,所以以边形AECD为梯形,有AE:DC二1:2,所以S^EG:S^CG=l:4ySmgdXS、ecg=SmegXSadcg'且有Sugd=Saec
15、g,所以Smeg:Sum=1:2,而这两个二角形咼相同,面积比为底的比,即EG:GD二1:2,同理FH:HD二1:2.有^med=S^eg+S^gd‘而Sued=S匸ABCD=18(平方厘米)有EG:GD=SM£.g:Smgz,,12所以S^eg二帀XSmed=6(平方厘米)S辭°二帀X=12(平方厘米)同理可得S^fc=6(平方厘米),S迪纽=12(平方厘米),Saqc