欢迎来到天天文库
浏览记录
ID:42715808
大小:2.53 MB
页数:16页
时间:2019-09-21
《2020版高考数学大一轮复习第九章平面解析几何9.1直线的方程教案理含解析新人教A版20190830319》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§9.1 直线的方程最新考纲考情考向分析1.在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的几种形式(点斜式、斜截式、截距式、两点式及一般式),了解斜截式与一次函数的关系.以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点.题型主要在解答题中与圆、圆锥曲线等知识交汇出现,有时也会在选择、填空题中出现.1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),则d(A,B)=
2、AB
3、=
4、.(2)中点公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),点M(x,y)是线段AB的中点,则x=,y=.2.直线的倾斜角(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°).3.直线的斜率(1)定义:通常,我们把直线y=kx+b中的系数k叫做这条直线的斜率,垂直于x轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=(x1≠x2).若直线的倾斜角为θ,则k=tanθ.4.直线方程
5、的五种形式16名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b不含垂直于x轴的直线两点式=不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用概念方法微思考1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k就越大吗?提示 倾斜角α∈[0,π),当α=时,斜率k不存在;因为k=tanα.当α∈时,α越大,斜率k就越大,同样α∈时也是如此,但当α∈(0,π)且α≠时就不是了.2.“截距”与“距离”有何区别?当截距相等时
6、应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.( √ )(2)若直线的斜率为tanα,则其倾斜角为α.( × )(3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( √ )题组二 教材改编2.若过点M(-2,m),N
7、(m,4)的直线的斜率等于1,则m的值为( )A.1B.4C.1或3D.1或4答案 A16解析 由题意得=1,解得m=1.3.过点P(2,3)且在两坐标轴上截距相等的直线方程为.答案 3x-2y=0或x+y-5=0解析 当截距为0时,直线方程为3x-2y=0;当截距不为0时,设直线方程为+=1,则+=1,解得a=5.所以直线方程为x+y-5=0.题组三 易错自纠4.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )A.B.C.∪D.∪答案 B解析 由直线方程可得该直线的斜率为-,又-1≤-<0,所以倾斜角的取值范围是.5.如果A·C<0且B·C<0,那么直
8、线Ax+By+C=0不通过( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故直线经过第一、二、四象限,不经过第三象限.6.过直线l:y=x上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则直线m的方程为.答案 x-2y+2=0或x=2解析 ①若直线m的斜率不存在,则直线m的方程为x=2,直线m,直线l和x轴围成的三角形的面积为2,符合题意;②若直线m的斜率k=0,则直线m与x轴没有交点,不符合题意;③若直线m的斜率k≠0,设其方程为y-2=k(x-2
9、),令y=0,得x=2-,依题意有×16×2=2,即=1,解得k=,所以直线m的方程为y-2=(x-2),即x-2y+2=0.综上可知,直线m的方程为x-2y+2=0或x=2.题型一 直线的倾斜角与斜率例1 (1)直线xsinα+y+2=0的倾斜角的范围是( )A.[0,π)B.∪C.D.∪答案 B解析 设直线的倾斜角为θ,则有tanθ=-sinα,又sinα∈[-1,1],θ∈[0,π),所以0≤θ≤或≤θ<π.(2)(2018·抚顺调研)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为.答案 (-∞,-]
此文档下载收益归作者所有